Class : XIth
Date :

Topic:-STRAIGHT LINES

381
(b)

Equation of line is $\frac{x}{a}+\frac{y}{b}=1$
Let P be the foot of perpendicular from the origin to the whose coordinate is $\left(x_{1}, y_{1}\right)$.

Since, $O P \perp A B$
\therefore Slope of $O P \times$ Slope of $A B=-1$
$\Rightarrow\left(\frac{y_{1}}{x_{1}}\right)\left(\frac{b}{-a}\right)=-1$,
$b y_{1}=a x_{1} \ldots$ (ii)
Since, P lies on the line $A B$, then
$\frac{x_{1}}{a}+\frac{y_{1}}{b}=1 \Rightarrow b x_{1}+a y_{1}=a b$
From Eqs. (ii) and (iii), we get
$x_{1}=\frac{a b^{2}}{a^{2}+b^{2}}$ and $y_{1}=\frac{a^{2} b}{a^{2}+b^{2}}$
Now, $x_{1}^{2}+y_{1}^{2}=\left(\frac{a b^{2}}{a^{2}+b^{2}}\right)^{2}+\left(\frac{a^{2} b}{a^{2}+b^{2}}\right)^{2}$
$\Rightarrow x_{1}^{2}+y_{1}^{2}=\frac{a^{2} b^{2}\left(a^{2}+b^{2}\right)}{\left(a^{2}+b^{2}\right)^{2}}$
$\Rightarrow x_{1}^{2}+y_{1}^{2}=\frac{a^{2} b^{2}}{\left(a^{2}+b^{2}\right)}$
$=\frac{1}{\frac{1}{a^{2}}+\frac{1}{b^{2}}}$

But $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c^{2}}$
$\therefore x_{1}^{2}+y_{1}^{2}=c^{2}$
Thus, the locus of $P\left(x_{1}, y_{1}\right)$ is
$x^{2}+y^{2}=c^{2}$
Which is the equation of circle.
382

(a)

Any line through A is given by
$(p x+q y-1)+\lambda(q x+p y-1)=0$
Which is passing through (p, q)
Hence, $\lambda=-\frac{\left(p^{2}+q^{y}-1\right)}{2 p q-1}$
Thus, the required line is
$(p x+q y-1)-\frac{\left(p^{2}+q^{2}-1\right)}{(2 p q-1)} \cdot(q x+p y-1)=0$
$\Rightarrow(2 p q-1)(p x+q y-1)-\left(p^{2}+q^{2}-1\right)(q x+p y-1)=0$
383
(a)

Solving the given equations, we obtain that the vertices of the triangle formed by them are $A(0,4)$, $B(1,1)$ and $C(4,0)$
Now, $A B=\sqrt{10}=B C, C A=4 \sqrt{2}$
Hence, triangle is isosceles
384
(a)

Image of $(1,3)$ in the line $x+y-6=0$ is given by
$\frac{x-1}{1}=\frac{y-3}{1}=-2\left(\frac{1+3-6}{1^{2}+1^{2}}\right) \Rightarrow x=3, y=5$
Hence, the image of the given point has coordinates $(3,5)$
385
(c)

Given lines
$x \cos \alpha+\gamma \sin \alpha=p_{1}$ and, $x \cos \beta+\gamma \sin \beta=p_{2}$
Will be perpendicular, if the lines perpendicular to them are also perpendicular.
Clearly, perpendiculars drawn from the origin to the given lines make angles α and β respectively with x-axis. Therefore, angle between them is $|\alpha-\beta|$
Thus, the given lines will be perpendicular, if $|\alpha-\beta|=\frac{\pi}{2}$

387
 (c)

Since, the given lines are concurrent.
$\therefore\left|\begin{array}{ccc}a & k & 10 \\ b & k+1 & 10 \\ c & k+2 & 10\end{array}\right|=0 \Rightarrow 10\left|\begin{array}{ccc}a & k & 1 \\ b & k+1 & 1 \\ c & k+2 & 1\end{array}\right|=0$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$
$\Rightarrow 10\left|\begin{array}{ccc}a & k & 1 \\ b-a & 1 & 0 \\ c-a & 2 & 0\end{array}\right|=0$
$\Rightarrow 10[1(2 b-2 a-c+a)]=0$
$\Rightarrow 2 b=a+c$
Hence, a, b and c are in AP
388
(b)

We have,
Required distance $=2 \sqrt{\frac{g^{2}-a c}{a(a+b)}}=\frac{2}{\sqrt{10}}$
389 (c)
Let $y=m x$ be a line represented by $a x^{3}+b x^{2} y+c x y^{2}+d y^{3}=0$. Then,
$d m^{3}+c m^{2}+b m+a=0 \quad\left[\begin{array}{c}\text { Putting } y=m x \text { in } a x^{3}+b x^{2} y \\ +c x y^{2}+d y^{3}=0\end{array}\right]$
Let m_{1}, m_{2}, m_{3} be the roots of this equation. Then,
$m_{1}+m_{2}+m_{3}=-\frac{c}{d}$
$m_{1} m_{2}+m_{2} m_{3}+m_{3} m_{1}=\frac{b}{d}$
$m_{1} m_{2} m_{3}=-\frac{a}{d}$
Thus, there are three lines viz. $y=m_{1} x, y=m_{2} x, y=m_{3} x$ represented by the given equation.
Suppose $y=m_{1} x$ and $y=m_{2} x$ make complementary angles with x-axis. Then,
$m_{1} m_{2}=1$
Putting $m_{1} m_{2}=1$ in $m_{1} m_{2} m_{3}=-\frac{a}{d}$, we get
$m_{3}=-\frac{a}{d}$
Since m_{3} is a root of the equation $d m^{3}+c m^{2}+b m+a=0$
$\therefore d\left(-\frac{a}{d}\right)^{3}+c\left(-\frac{a}{d}\right)^{2}+b\left(-\frac{a}{d}\right)+a=0$
$\Rightarrow-a^{3} d+a^{2} c d-a b d^{2}+a d^{3}=0$
$\Rightarrow-a^{2}+a c-b d+d^{2}=0$
$\Rightarrow a(c-a)=d(b-d) \Rightarrow a(a-c)=d(d-b)$
390
(a)

Let the lines are $y=m_{1} x+c_{1}$ and $y=m_{2} x+c_{2}$
Since, pair of straight lines are parallel to x-axis
$\therefore m_{1}=m_{2}=0$
and the lines will be $y=c_{1}$ and $y=c_{2}$
Given circle is $x^{2}+y^{2}-6 x-4 y-12=0$
Centre $(3,2)$ and radius $=5$

Here, the perpendicular drown from centre to the lines are $C P$ and $C P^{\prime \prime}$
$\therefore C P=\frac{2-c_{1}}{\sqrt{1}}= \pm 5$
$\Rightarrow 2-c_{1}= \pm 5$
$\Rightarrow c_{1}=7$ and $c_{1}=-3$
Hence, the lines are
$y-7=0, y+3=0, i e,(y-7)(y+3)=0$
\therefore Pair of straight lines is $y^{2}-4 y-21=0$

391
 (a)

Now, slope of $Q R=\frac{3 \sqrt{3}-0}{3-0}=\sqrt{3}=\tan \theta$
$\Rightarrow \theta=\frac{\pi}{3}$

\therefore The angle between $P Q R$ is $\frac{2 \pi}{3}$, so the line $Q M$ makes an angle $\frac{2 \pi}{3}$ from positive direction of x-axis.
Slope of the line $Q M=\tan \frac{2 \pi}{3}=-\sqrt{3}$
Hence, equation of line $Q M$ is $y=-\sqrt{3} x$
or $\sqrt{3} x+y=0$
392
(a)

Let $a y^{4}+b x y^{3}+c x^{2} y^{2}+d x^{3} y+e x^{4}=\left(a x^{2}+p x y-a y^{2}\right)\left(x^{2}+q x y+y^{2}\right)$
On comparing the coefficient of similar terms, we get
$b=a q-p, c=-p q, d=a q+p, e=-a$
Now, $b+d=2 a q, e-a=-2 a$
$a d+b e=2 a p, a+c+e=-p q$
$\therefore(b+d)(a d+b e)=-(e-a)^{2}(a+c+e)$
$\Rightarrow(b+d)(a d+e b)+(e-a)^{2}(a+c+e)=0$
393
(d)

Given equation is
$3 x^{2}+x y-y^{2}-3 x+6 y+k=0$
Here, $a=3, b=-1, h=\frac{1}{2}, g=-\frac{3}{2} f=3, c=k$,
Given equation represents a pair of straight line, if
$a b c+2 f g h-a f^{2}-b \mathrm{~g}^{2}-c h^{2}=0$
$\therefore 3(-1)(k)+2 \times 3 \times\left(-\frac{3}{2}\right) \times \frac{1}{2}-3(3)^{2}+1\left(\frac{-3}{2}\right)^{2}-k\left(\frac{1}{2}\right)^{2}=0$
$\Rightarrow-3 k-\frac{9}{2}-27+\frac{9}{4}-\frac{k}{4}=0 \Rightarrow k=-9$

Let (h, k) be the coordinates of the vertex. Then, the height of the triangle is the length of the perpendicular from (h, k) on $x=a$ i.e. $|h-a|$
Since the area of the triangle is a^{2}
$\therefore \frac{1}{2}(2 a)|h-a|=a^{2}$
$\Rightarrow|h-a|=a$
$\Rightarrow h-a= \pm a \Rightarrow h=0, h=2 a$
Hence, the vertex lies on $x=0$ or, $x=2 a$
395
(a)

The distance of the point $(-2,3)$ from the line $x-y=5$ is
$p=\left|\frac{-2-3-5}{\sqrt{(1)^{2}}+(-1)^{2}}\right|$
$=\left|\frac{-10}{\sqrt{2}}\right|=\frac{10}{\sqrt{2}}=5 \sqrt{2}$
396
(b)

Here, $h=-\frac{1}{2}, a=1, b=-6$
$\therefore \tan =\left|2 \frac{\sqrt{\frac{1}{4}+6}}{1-6}\right|=\frac{2 \sqrt{\frac{25}{4}}}{-5}=|-1|$
$\therefore \theta=\tan ^{-1}(1)=45^{\circ}$

397
 (c)

On comparing the given equation with standard equation, we get $a=12$ and $b=a$. We also know, if pair of straight lines is perpendicular, then coefficient of $x^{2}+$ coefficient of $y^{2}=0$ or $a+b=0$ $\therefore 12+a=0 \Rightarrow a=-12$
398
(a)
$\because A D=\left|\frac{-2-2-1}{\sqrt{(2)^{2}+(-1)^{2}}}\right|=\left|\frac{-5}{\sqrt{5}}\right|=\sqrt{5}$
and in $\triangle A B D \tan 60^{\circ}=\frac{A D}{B D}$

$\Rightarrow \sqrt{3}=\frac{\sqrt{5}}{B D} \Rightarrow B D=\sqrt{\frac{5}{3}}$
$\therefore B C=2 B D=2 \sqrt{\frac{5}{3}}=\sqrt{\frac{20}{3}}$

The equation of any line parallel to $2 x+6 y+7=0$ is $2 x+6 y+k=0$. This meets the axes at $A(-k / 2,0)$ and $B(0,-k / 6)$
Now,
$A B=10$
$\Rightarrow \sqrt{\frac{k^{2}}{4}+\frac{k^{2}}{36}}=10$
$\Rightarrow \sqrt{\frac{10 k^{2}}{36}}=10$
$\Rightarrow 10 k^{2}=3600 \Rightarrow k= \pm 6 \sqrt{10}$
Hence, there are two lines given by $2 x+6 y \pm 6 \sqrt{10}=0 \mathrm{~s}$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | B | A | A | A | C | A | C | B | C | A |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | A | A | D | B | A | B | C | A | B | A |
| | | | | | | | | | | |

