Class: XIth
Subject : MATHS
Date :
DPP No. : 9

Topic :- STATISTICS

1. The mode of the data $6,4,3,6,4,3,4,6,3, x$ can be
a) Only 5
b) Both 4 and 6
c) Both 3 and 6
d) 3,4 or 6
2. The arithmetic mean of first n odd natural numbers is
a) n
b) $\frac{n+1}{2}$
c) $n-1$
d) None of these
3. If a variable takes discrete values $x+4, x-\frac{7}{2}, x-\frac{5}{2}, x-3, x-2, x+\frac{1}{2}, x-\frac{1}{2}, x+5,(x>0)$ then the median is
a) $x-\frac{5}{4}$
b) $x-\frac{1}{2}$
c) $x-2$
d) $x+\frac{5}{4}$
4. If $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ are n values of a variable X and $y_{1}, y_{2}, \ldots, y_{n}$ are n values of a variable Y such that $y_{i}=\frac{x_{i}-a}{h} ; i=1,2, \ldots, n$, then
a) $\operatorname{Var}(Y)=\operatorname{Var}(X)$
b) $\operatorname{Var}(X)=h^{2} \operatorname{Var}(Y)$
c) $\operatorname{Var}(Y)=h^{2} \operatorname{Var}(X)$
d) $\operatorname{Var}(X)=h^{2} \operatorname{Var}(Y)+a$
5. If a variate X is expressed as a linear function of two variates U and V the form $X=a U+b V$, then mean \bar{X} of X is
a) $a \bar{U}+b \bar{V}$
b) $\bar{u}+\bar{V}$
c) $b \bar{u}+a \bar{u}$
d) None of these
6. The means and variance of n observations $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ are 5 and 0 respectively. If $\sum_{i=1}^{n} x_{i}^{2}=400$, then the value of n is equal to
a) 80
b) 25
c) 20
d) 16
7. Given the following frequency distribution with some missing frequencies

Class	Frequency
$10-20$	180
$20-30$	-
$30-40$	34
$40-50$	180
$50-60$	136
$60-70$	-
$70-80$	50

If the total frequency is 685 and median is 42.6 , then missing frequencies are respectively
a) 81,24
b) 80,25
c) 82,23
d) 83,22
8. Let r be the range and $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ be the S.D. of a set observations $x_{1}, x_{2}, \ldots, x_{n}$, then
a) $S \leq r \sqrt{\frac{n}{n-1}}$
b) $S=r \sqrt{\frac{n}{n-1}}$
c) $S \geq r \sqrt{\frac{n}{n-1}}$
d) None of these
9. The variance of first n numbers is
a) $\frac{n^{2}+1}{12}$
b) $\frac{n^{2}-1}{12}$
c) $\frac{(n+1)(2 n+1)}{6}$
d) $\left[\frac{n(n+1)}{2}\right]^{2}$
10. Quartile deviation is
a) $\frac{4}{5} \sigma$
b) $\frac{3}{2} \sigma$
c) $\frac{2}{3} \sigma$
d) $\frac{5}{4} \sigma$
11. If the mean of the following distribution is 13 , then $p=$
$x_{i}: \begin{array}{llllll}5 & 10 & 12 & 17 & 16 & 20\end{array}$
$f_{i}: \begin{array}{llllll}9 & 3 & p & 8 & 7 & 5\end{array}$
a) 6
b) 7
c) 10
d) 4
12. If a variable x takes values x_{i} such that $a \leq x_{i} \leq b$, for $i=1,2, \ldots n$, then
a) $a^{2} \leq \operatorname{var}(x) \leq b^{2}$
b) $a \leq \operatorname{var}(x) \leq b$
c) $\frac{a^{2}}{4} \leq \operatorname{var}(x)$
d) $(b-a)^{2} \geq \operatorname{var}(x)$
13. If $y=f(x)$ be a monotonically increasing or decreasing function of x and M is the median of variable x, then the median of y is
a) $f(M)$
b) $M / 2$
c) $f^{-1}(M)$
d) None of these
14. For a certain, frequency table which has been partly reproduced here, the Arithmetric mean was found to be Rs 28.07

Income (in Rs)	No. of workers
15	8
20	12
25	$?$
30	16
35	$?$
40	10

If the total number of workers is 75 , then missing frequencies are respectively
a) 14,15
b) 15,14
c) 13,16
d) 12,17
15. In an experiment with 15 observations on x, the following results were available $\sum x^{2}$ $=2830, \sum x=170$. One observation that was 20 , was found to be wrong and was replaced by the correct value 30 . Then, the corrected variance is
a) 78.0
b) 188.66
c) 177.33
d) 8.33
16. The following age group are included in the proportion indicated

Age Group Relative Proportion in Population
12-17
0.17

18-23
0.31

24-29
0.27

30-35
0.21

36+
0.04

How many of each age group should be included in a sample of 3000 people to make the sample representative?
a) $850,155,135,905,955$
b) $510,930,810,630,120$
c) $600,600,600,600,600$
d) $510,630,950,100,810$
17. The mean of the value of $1,2,3, \ldots n$ with respectively frequencies $x, 2 x, 3 x, \ldots n x$ is
a) $\frac{n}{2}$
b) $\frac{1}{3}(2 n+1)$
c) $\frac{1}{6}(2 n+1)$
d) $\frac{n}{2}$
18. If $Z=a X+b Y$ and r be the correlation coefficient between X and Y, then σ_{Z}^{2} is equal to
a) $a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}+2 a b r \sigma_{X} \sigma_{Y}$
b) $a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}-2 a b r \sigma_{X} \sigma_{Y}$
c) $2 a b r \sigma_{X} \sigma_{Y}$
d) None of the above
19. The mean deviation of the series $a, a+d, a+2 d, \ldots, a+2 n d$ from its mean, is
a) $\frac{(n+1) d}{2 n+1}$
b) $\frac{n d}{2 n+1}$
c) $\frac{n(n+1) d}{2 n+1}$
d) $\frac{(2 n+1) d}{n(n+1)}$
20. The AM of the series $1,2,4,8,16, \ldots, 2^{n}$, is
a) $\frac{2^{n}-1}{n}$
b) $\frac{2^{n+1}-1}{n+1}$
c) $\frac{2^{n}+1}{n}$
d) $\frac{2^{n}-1}{n+1}$

