Class: XIth
Date :

Subject : MATHS
DPP No. : 7

Topic :- STATISTICS

1. The standard deviation of the data:
x : $1 \begin{array}{lllll} & a & a^{2} & \cdots & a^{n}\end{array}$
f: ${ }^{n} C_{0}{ }^{n} C_{1}{ }^{n} C_{2} \quad \cdots \quad{ }^{n} C_{n}$
is
a) $\left(\frac{1+a^{2}}{2}\right)^{n}-\left(\frac{1+a}{2}\right)^{n}$
b) $\left(\frac{1+a^{2}}{2}\right)^{2 n}-\left(\frac{1+a}{2}\right)^{n}$
c) $\left(\frac{1+a}{2}\right)^{2 n}-\left(\frac{1+a^{2}}{2}\right)^{n}$
d) None of these
2. If $\operatorname{var}(x)=8.25, \operatorname{var}(y)=33.96$ and $\operatorname{cov}(x, y)=10.2$ then the correlation coefficient is
a) 0.89
b) -0.98
c) 0.61
d) -0.16
3. If the difference between the mode and median is 2 , then the difference between the median and mean is (in the given order)
a) 2
b) 4
c) 1
d) 0
4. If the lines of regression are $3 x+12 y=19$ and $3 y+9 x=46$, then $r_{x y}$ will be
a) 0.289
b) -0.289
c) 0.209
d) None of these
5. If $\sum x=15, \sum y=36, \sum x y=110, n=5$, then $\operatorname{cov}(x, y)$ equals
a) $1 / 5$
b) $-1 / 5$
c) $2 / 5$
d) $-2 / 5$
6. A statistical measure which cannot be determined graphically is
a) Median
b) Mode
c) Harmonic mean
d) Mean
7. The mean of n observations is \bar{x}. If one observation x_{n+1} is added, then the mean remains same. The value of x_{n+1} is
a) 0
b) 1
c) n
d) \bar{x}
8. Let $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ be n observations with mean m and standard deviation s. Then the standard deviation of the observations $a x_{1}, a x_{2}, a x_{3}, \ldots, a x_{n}$, is
a) $a+x$
b) s / a
c) $|a| s$
d) $a s$
9. The positional average of central tendency is
a) GM
b) HM
c) AM
d) Median
10. The mean of a set of observations is \bar{x}. If each observation is divided by, $\alpha \neq 0$ and then is increased by 10 , then the mean of the new set is
a) $\frac{\bar{x}}{\alpha}$
b) $\frac{\bar{x}+10}{\alpha}$
c) $\frac{\bar{x}+10 \alpha}{\alpha}$
d) $\alpha \bar{x}+10$
11. The median of 19 observations of a group is 30 . If two observations with values 8 and 32 are further included, then the median of the new group of 21 observations will be
a) 28
b) 30
c) 32
d) 34
12. The variance of first n natural numbers is
a) $\frac{n^{2}+1}{12}$
b) $\frac{n^{2}-1}{12}$
c) $\frac{(n+1)(2 n+1)}{6}$
d) None of these
13. What is the standard deviation of the following series.

Measurements $0-10 \quad 10-20 \quad 20-30 \quad 30-40$
$\begin{array}{llllll}\text { Frequency } & 1 & 3 & 4 & 2\end{array}$
a) 81
b) 7.6
c) 9
d) 2.26
14. If a variable takes discrete values $x+4, x-\frac{7}{2}, x-\frac{5}{2}, x-3, x-2, x+\frac{1}{2}, x-\frac{1}{2}, x+5,(x>0)$, then the median is
a) $x-\frac{5}{4}$
b) $x-\frac{1}{2}$
c) $x-2$
d) $x+\frac{5}{4}$
15. The weighted AM of first n natural numbers whose weights are equal to the corresponding numbers is equal to
a) $2 n+1$
b) $\frac{1}{2}(2 n+1)$
c) $\frac{1}{3}(2 n+1)$
d) $\frac{2 n+1}{6}$
16. If each of n numbers $x_{i}=i$ is replaced by $(i+1) x_{i}$, then the new mean is
a) $\frac{(n+1)(n+2)}{n}$
b) $n+1$
c) $\frac{(n+1)(n+2)}{3}$
d) None of these
17. The most stable measure of central tendency is
a) The mean
b) The median
c) The mode
d) None of these
18. If the median of the scores $1,2, x, 4,5$ (where $1<2<x<4<5$) is 3 , then the mean of the scores is
a) 2
b) 3
c) 4
d) 5
19. Mode of a certain series is x. If each score is decreased by 3 , then mode of the new series is
a) x
b) $x-3$
c) $x+3$
d) $3 x$
20. The coefficient of quartile deviation is calculated by the formula
a) $\frac{Q_{1}+Q_{2}}{4}$
b) $\frac{Q_{3}+Q_{1}}{4}$
c) $\frac{Q_{3}-Q_{1}}{Q_{3}+Q_{1}}$
d) $\frac{Q_{2}+Q_{1}}{Q_{2}-Q_{1}}$

