

Class : XIth Date : Subject : MATHS DPP No. : 7

Topic :- statistics

1. The standard deviation of the data: x: 1 $a a^2 \cdots a^n$ $f: {}^{n}C_{0} {}^{n}C_{1} {}^{n}C_{2} {}^{m}C_{n}$ is a) $\left(\frac{1+a^2}{2}\right)^n - \left(\frac{1+a}{2}\right)^n$ b) $\left(\frac{1+a^2}{2}\right)^{2n} - \left(\frac{1+a}{2}\right)^n$ c) $\left(\frac{1+a}{2}\right)^{2n} - \left(\frac{1+a^2}{2}\right)^n$ d) None of these 2. If var(x) = 8.25, var(y) = 33.96 and cov(x,y) = 10.2 then the correlation coefficient is b)-<mark>0.98</mark> d)-0.16 a) 0.89 c) 0.61 3. If the difference between the mode and median is 2, then the difference between the median and mean is (in the given order) a) 2 b)4 c) 1 d)0 4. If the lines of regression are 3x + 12y = 19 and 3y + 9x = 46, then r_{xy} will be a) 0.289 b)-<mark>0.28</mark>9 c) 0.209 d) None of these 5. If $\sum x = 15$, $\sum y = 36$, $\sum xy = 110$, n = 5, then cov(x,y) equals a) 1/5 b)-1/5 c) 2/5 d)-2/5 6. A statistical measure which cannot be determined graphically is a) Median b) Mode c) Harmonic mean d) Mean 7. The mean of *n* observations is \overline{x} . If one observation x_{n+1} is added, then the mean remains same. The value of x_{n+1} is a) 0 b)1 c) n d) \overline{x} 8. Let $x_1, x_2, x_3, ..., x_n$ be *n* observations with mean *m* and standard deviation *s*. Then the standard deviation of the observations $ax_1, ax_2, ax_3, ..., ax_n$, is a) a + xb)s/a c) |a| sd) as 9. The positional average of central tendency is a) GM b)HM c) AM d) Median 10. The mean of a set of observations is \overline{x} . If each observation is divided by, $\alpha \neq 0$ and then is increased by 10, then the mean of the new set is b) $\frac{\overline{x}+10}{\alpha}$ a) $\frac{\overline{x}}{\alpha}$ c) $\frac{\overline{x} + 10\alpha}{\alpha}$ d) $\alpha \overline{x} + 10$ 11. The median of 19 observations of a group is 30. If two observations with values 8 and 32 are further included, then the median of the new group of 21 observations will be b)30 c) 32 a) 28 d)34

12. The variance of first <i>n</i> natural numbers is							
	a) $\frac{n^2 + 1}{12}$	b) <u>n</u>	$\frac{2^2-1}{12}$		c) $\frac{(n+1)}{(n+1)}$	$\frac{1)(2 n + 1)}{6}$	d) None of these
13. What is the standard deviation of the following series.							
Measurements 0-10 10-20 20-30 30-40							
Fr	equency 1	3	4 2	2			
	a) 81				b) 7.6		
	c) 9				d) 2.2	6	
14. If a variable takes discrete values $x + 4$, $x - \frac{7}{2}$, $x - \frac{5}{2}$, $x - 3$, $x - 2$, $x + \frac{1}{2}$, $x - \frac{1}{2}$, $x + 5$, $(x > 0)$,							
then the median is							
	a) $x - \frac{5}{4}$	b) <i>x</i>	$-\frac{1}{2}$		c) <i>x</i> –	2	d) $x + \frac{5}{4}$
15. The weighted AM of first <i>n</i> natural numbers whose weights are equal to the corresponding							
numbers is equal to							
	a) 2 <i>n</i> + 1	b) $\frac{1}{2}$	(2n + 1)		c) $\frac{1}{3}(2t)$	n + 1)	d) $\frac{2n+1}{6}$
16.	16. If each of <i>n</i> numbers $x_i = i$ is replaced by $(i + 1)x_i$, then the new mean is						
	a) $\frac{(n+1)(n+2)}{n}$	b) <i>n</i>	+ 1		c) $\frac{(n+1)}{2}$	$\frac{1)(n+2)}{3}$	d)None of these
17. The most stable measure of central tendency is							
	a) The mean	b) T	'he mediar	1	c) The	mode	d) None of these
18. If the median of the scores 1, 2, x, 4, 5 (where $1 < 2 < x < 4 < 5$) is 3, then the mean of the							
SCO	res is						
	a) 2	b) 3			c) 4		d)5
19.	19. Mode of a certain series is <i>x</i> . If each score is decreased by 3, then mode of the new series is						
	a) <i>x</i>	b) <i>x</i>	- 3		c) <i>x</i> +	3	d)3 <i>x</i>
20. The coefficient of quartile deviation is calculated by the formula							
	a) $\frac{Q_1 + Q_2}{4}$	b) ^{<i>Q</i>}	$\frac{1}{4} + Q_1$		c) $\frac{Q_3}{Q_3}$ +	$\frac{Q_1}{Q_1}$	d) $\frac{Q_2 + Q_1}{Q_2 - Q_1}$