

Class : XIth Date : Subject : MATHS DPP No. : 2

## Topic :- statistics

| 1.                                                                               | The weighted mean of first $n$ natural numbers whose weights are equal is given by                           |                                                           |                                                     |                                  |  |  |  |  |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|----------------------------------|--|--|--|--|
|                                                                                  | a) $\frac{n+1}{2}$                                                                                           | b) $\frac{2n+1}{2}$                                       | C) $\frac{2n+1}{3}$                                 | d) $\frac{(2n+1)(n+1)}{6}$       |  |  |  |  |
| 2.                                                                               | The variance of the first <i>n</i> natural numbers is                                                        |                                                           |                                                     |                                  |  |  |  |  |
|                                                                                  | a) $\left(\frac{n^2-1}{12}\right)$                                                                           | b) $\frac{n(n^2-1)}{12}$                                  | $C\left(\frac{n^2+1}{12}\right)$                    | $d)\frac{n(n^2+1)}{12}$          |  |  |  |  |
| 3.                                                                               | Following are the m                                                                                          | arks obtained by 9 stud                                   | ents in Mathematics tes                             | t:                               |  |  |  |  |
| 50,69,20,33,53,39,40,65,59                                                       |                                                                                                              |                                                           |                                                     |                                  |  |  |  |  |
| The                                                                              | e mean deviation from th                                                                                     | te median is                                              | .) 10 (7                                            | 1) 1 4 7 (                       |  |  |  |  |
|                                                                                  | $a_{j}9$                                                                                                     | DJ 10.5                                                   | CJ 12.67                                            | a)14.76                          |  |  |  |  |
| 4.                                                                               | If the median of $\frac{x}{2'3'4'5'6}$ (where $x > 0$ ) is 6, then $x =$                                     |                                                           |                                                     |                                  |  |  |  |  |
|                                                                                  | a) 6                                                                                                         | b) 18                                                     | c) 12                                               | d)24                             |  |  |  |  |
| 5.                                                                               | 5. Coefficient of skewness <mark>for the values</mark>                                                       |                                                           |                                                     |                                  |  |  |  |  |
| Mee                                                                              | dian = 18.8, $Q_1 = 14.6$ , 0                                                                                | $Q_3 = 25.2$ is                                           |                                                     |                                  |  |  |  |  |
|                                                                                  | a) 0.2                                                                                                       | b) 0.5                                                    | c) 0.7                                              | d)None of these                  |  |  |  |  |
| 6.                                                                               | The arithmetic mean of the <mark>squares of first <i>n</i> natural numbers is</mark>                         |                                                           |                                                     |                                  |  |  |  |  |
|                                                                                  | a) $\frac{n+1}{6}$                                                                                           | b) $\frac{(n+1)(2n+1)}{6}$                                | c) $\frac{n^2 - 1}{6}$                              | d) None of these                 |  |  |  |  |
| 7.                                                                               | If $G_1, G_2$ are the geomet                                                                                 | ric m <mark>eans</mark> of two series (                   | of observations and G is                            | the GM of the ratios of          |  |  |  |  |
| the                                                                              | corresponding observat                                                                                       | tions then $G$ is equal to                                |                                                     |                                  |  |  |  |  |
|                                                                                  | a) $\frac{G_1}{G_2}$                                                                                         | b) $\log G_1 - \log G_2$                                  | $\operatorname{C} \frac{\log G_1}{\log G_2}$        | d)log( $G_1 \cdot G_2$ )         |  |  |  |  |
| 8.                                                                               | The coefficient of correlation (r) and the two regression coefficients $b_{yx}$ , $b_{xy}$ are related       |                                                           |                                                     |                                  |  |  |  |  |
| as                                                                               |                                                                                                              |                                                           |                                                     |                                  |  |  |  |  |
|                                                                                  | a) $r = \frac{b_{xy}}{b_{yx}}$                                                                               |                                                           | b) $r = b_{xy} \times b_{yx}$                       |                                  |  |  |  |  |
|                                                                                  | c) $r = b_{xy} + b_{yx}$                                                                                     |                                                           | d) $r = (\text{sign } b_{yx}) \sqrt{b_{xy} b_{yx}}$ |                                  |  |  |  |  |
| 9.                                                                               | Let $a,b,c,d,e$ be the observations with mean $m$ and standard deviation $\sigma$ . The standard             |                                                           |                                                     |                                  |  |  |  |  |
| deviation of the observations $a + k_{,b} + k_{,c} + k_{,d} + k_{,e} + k_{,}$ is |                                                                                                              |                                                           |                                                     |                                  |  |  |  |  |
|                                                                                  | a) σ                                                                                                         | b) <i>k σ</i>                                             | c) $k + \sigma$                                     | d) $\sigma/k$                    |  |  |  |  |
| 10.                                                                              | ). If the S.D. of a variable X is $\sigma$ , then the S.D. of $\frac{aX+b}{c}(a,b,c)$ are constant), is      |                                                           |                                                     |                                  |  |  |  |  |
|                                                                                  | a) $\frac{a}{c}\sigma$                                                                                       | b) $\left \frac{a}{\sigma}\right  \sigma$                 | c) $\left \frac{c}{c}\right \sigma$                 | d) $\frac{c}{c}\sigma$           |  |  |  |  |
| 11.                                                                              | The mean of the series                                                                                       | $x_1, x_2, \dots, x_n$ is $\overline{X}$ . If $x_2$ is re | enlaced by $\lambda$ , then the ne                  | w mean is                        |  |  |  |  |
|                                                                                  | $\overline{\mathbf{W}}$ + 1                                                                                  | $\sum_{n=1}^{\infty} \overline{X} - x_2 - \lambda$        | $(n-1)\overline{X} + \lambda$                       | $n \overline{X} - x_2 + \lambda$ |  |  |  |  |
|                                                                                  | a) $x - x_2 + \lambda$                                                                                       | DJ - n                                                    | $CJ - \frac{n}{n}$                                  | a) <u></u>                       |  |  |  |  |
| 12.                                                                              | 12. If $\sigma$ is the standard deviation of a random variable <i>x</i> , then the standard deviation of the |                                                           |                                                     |                                  |  |  |  |  |
| random variable $ax + b$ , where $a, b \in R$ is                                 |                                                                                                              |                                                           |                                                     |                                  |  |  |  |  |

| a) <i>ασ</i> -                                                                                                                | + <i>b</i>                                                                                                                         | b)  <i>a</i>  σ                     | c) $ a \sigma + b$                  | d) $a^2\sigma$                          |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------------|--|--|--|--|
| 13. If the n                                                                                                                  | 13. If the mean of a set of observations $x_1, x_2, \dots x_{10}$ is 20, then the mean of $x_1 + 4, x_2 + 8, \dots x_{10} + 40$ is |                                     |                                     |                                         |  |  |  |  |
| a) 34                                                                                                                         |                                                                                                                                    | b) 38                               | c) 40                               | d)42                                    |  |  |  |  |
| 14. Which                                                                                                                     | one of the follow                                                                                                                  | ing is correct?                     |                                     |                                         |  |  |  |  |
| a) Quai                                                                                                                       | a) Quartile derivation is one half of the sum of the upper and lower quartiles                                                     |                                     |                                     |                                         |  |  |  |  |
| b) For f                                                                                                                      | b) For finding median, the items of the series are arranged in ascending or descending order of                                    |                                     |                                     |                                         |  |  |  |  |
| magnitude                                                                                                                     |                                                                                                                                    |                                     |                                     |                                         |  |  |  |  |
| c) Mea                                                                                                                        | c) Mean, mode, median have not same unit                                                                                           |                                     |                                     |                                         |  |  |  |  |
| d) SD c                                                                                                                       | d)SD can be computed from any average                                                                                              |                                     |                                     |                                         |  |  |  |  |
| 15. The mean deviation from mean of the observation $a$ , $a + d$ , $a + 2d$ , $a + 2nd$ is                                   |                                                                                                                                    |                                     |                                     |                                         |  |  |  |  |
| a) $\frac{n(n+1)}{3}$                                                                                                         | $\frac{1)d^2}{3}$                                                                                                                  | b) $\frac{n(n+1)}{2}d^2$            | c) $a + \frac{n(n+1)d^2}{2}$        | d)None of these                         |  |  |  |  |
| 16. If the variance of 1, 2, 3, 4, 5,, 10 is $\frac{99}{12}$ , then the standard derivation of 3, 6, 9, 12,, 30 is            |                                                                                                                                    |                                     |                                     |                                         |  |  |  |  |
| a) $\frac{297}{4}$                                                                                                            |                                                                                                                                    | b) $\frac{3}{2}\sqrt{33}$           | c) $\frac{3}{2}\sqrt{99}$           | d) $\sqrt{\frac{99}{12}}$               |  |  |  |  |
| 17. Consider first 10 positive integers having standard deviation 2.87. If we multiply each number                            |                                                                                                                                    |                                     |                                     |                                         |  |  |  |  |
| by $-1$ and then add 1 to each number, the standard deviation of the numbers so obtained is                                   |                                                                                                                                    |                                     |                                     |                                         |  |  |  |  |
| a) 8.25                                                                                                                       |                                                                                                                                    | b) 2.87                             | c) -2.87                            | d) -8.25                                |  |  |  |  |
| 18. If SD of X is s, then SD of the variable $\mu = \frac{aX + b}{c}$ , where a, b, c are constants, is                       |                                                                                                                                    |                                     |                                     |                                         |  |  |  |  |
| a) $\left \frac{c}{a}\right \sigma$                                                                                           |                                                                                                                                    | b) $\left \frac{a}{c}\right \sigma$ | c) $\left \frac{b}{c}\right \sigma$ | d) $\left \frac{c^2}{a^2}\right \sigma$ |  |  |  |  |
| 19. The S.D. of the series a, $a + \frac{d}{a} + 2\frac{d}{a} + 2\frac{d}{a}$ , is                                            |                                                                                                                                    |                                     |                                     |                                         |  |  |  |  |
| a) $\frac{n(n+3)}{3}$                                                                                                         | $\frac{(1)}{d^2}d^2$                                                                                                               | b) $\sqrt{\frac{n(n+1)}{3}}d$       | c) $\frac{n(n-1)}{3}d^2$            | d) $\sqrt{\frac{n(n-1)}{3}}d$           |  |  |  |  |
| 20. In a moderately skewed dis <mark>tribu</mark> tion th <mark>e valu</mark> es of mean and median are 5 and 6 respectively. |                                                                                                                                    |                                     |                                     |                                         |  |  |  |  |
| The value of mode in such a situation is approximately equal to                                                               |                                                                                                                                    |                                     |                                     |                                         |  |  |  |  |
| a) 8                                                                                                                          |                                                                                                                                    | b)11                                | c) 16                               | d) None of these                        |  |  |  |  |
|                                                                                                                               |                                                                                                                                    |                                     |                                     |                                         |  |  |  |  |
|                                                                                                                               |                                                                                                                                    |                                     |                                     |                                         |  |  |  |  |
|                                                                                                                               |                                                                                                                                    |                                     |                                     |                                         |  |  |  |  |