

Class: XIth
Date:
Subject: MATHS
DPP No.: 10

Topic:- statistics

1. A group of 10 items has arithmetic mean 6. If the arithmetic mean of 4 of these items is 7.5,							
then the mean of the remaining items is							
	a) 6.5	b) 5.5	c) 4.5	d) 5.0			
2.	If the coefficient of va	riation is 45% and tl	he mean is 12 then its s	standard derivation is			
	a) 5.2	b) 5.3	c) 5.4	d) None of these			
3.	Consider any set of 201	observations x_1, x_2,x_n	x_{200}, x_{201} . It is given that x	$x_1 < x_2 < \dots < x_{200} < x_{201}$.			
Then, the mean deviation of this set of observations about a point k is minimum when k equals							
	a) $(x_1 + x_2 + + x_{200} +$	$-x_{201}$)/201	b) <i>x</i> ₁	c) x_{101} d) x_{201}			
4.	Consider the followi	ing statements :					
1. The values of median and mode can be determined graphically							
2. Mean, Median and Mode have the same unit							
	lange is the best measure						
Wh	ich of these is/are corre	ct?					
	a) (1) alone	b)(2) alone	c) Both (2) and (3)	d) None of these			
5.	Variance is independen						
		b) Scale only	c) Origin and scale bot				
6. The algebraic sum of the de <mark>viation of 20 observations measured from 30 is 2. Then, mean of</mark>							
obs	ervations is	12004) 00 5	D 00 6			
_	a) 28.5	b)30.1	c) 30.5	d) 29.6			
7. The average marks of boys in a class is 52 and that of girls is 42. The average marks of							
boy	_		e of boys in the class is	4004			
	a) 40%	b) 20%	c) 80%	d) 60%			
8. If the mean of five observations x , $x + 2$, $x + 4$, $x + 6$ and $x + 8$ is 11, then the mean of last							
thr	ee observations is	1245) 45	DAY Col			
	a) 13	b) 15	c) 17	d) None of these			
9. In a series of $2n$ observations, half of them equal a and remaining half equal– a . If the							
standard deviation of the observations is 2, then $ a $ equals							
	a) $\frac{1}{n}$	b) $\sqrt{2}$	c) 2	$d)\frac{\sqrt{2}}{n}$			
	The weighted means of first n natural numbers whose weights are equal to the squares of						
corresponding numbers is							
	a) $\frac{n+1}{2}$	b) $\frac{3 n(n+1)}{2(2 n+1)}$	c) $\frac{(n+1)(2n+1)}{6}$	d) $\frac{n(n+1)}{2}$			
11.	Which one of the following statements is incorrect?						
	a) If \overline{X} is the mean of n values of a variable X , then $\sum_{i=1}^{n} (x_i - \overline{X})$ is equal to 0						

	b) If \overline{X} is the mean of n values of a variable X and a has any value other than \overline{X} , then							
$\sum_{i=1}^{n}$	$\sum_{i=1}^n (x_1 - \overline{X})^2$ is the least value of $\sum_{i=1}^n (x_i - a)^2$							
	c) The mean deviation of the data is least when deviations are taken about mean							
	d) The mean deviation of the data is least when deviations are taken about median							
12.	2. The mean of n items is \overline{X} . If the first term is increased by 1, second by 2 and so on, then the new							
mean is								
	a) $\overline{X} + n$	b) $\overline{X} + \frac{n}{2}$	c) $\overline{X} + \frac{n+1}{2}$	d) None of these				
13.	3. The standard deviation for the scores 1, 2, 3, 4, 5, 6 and 7 is 2. Then, the standard							
deviation of 12, 23, 34, 45, 56, 67 and 78 is								
	a) 2	b) 4	c) 22	d) 11				
14.	4. The first of two samples has 100 items with mean 15 and SD=3. If the whole group has 250							
items with mean 15.6 and $SD = \sqrt{13.44}$, the SD of the second group is								
	a) 4	b)5	c) 6	d) 3.52				
15.	The GM of the series 1,	2,4,8,16,,2 ⁿ is						
	a) $2^{n+1/2}$	b) 2^{n+1}	c) $2^{n/2}$	d) 2^n				
16.	The standard deviation of a variable x is 10. Then, the standard deviation of $50 + 5x$ is							
	a) 50	b) 550	c) 10	d)500				
17.	17. The two lines of regression are given by $3x + 2y = 26$ and $6x + y = 31$. The coefficient							
of correlation between <i>x</i> and <i>y</i> is								
	a) $-1/3$	b) 1/3	c) $-1/2$	d) 1/2				
18.	If θ is the angle between		es with correlation co	efficient y, then				
	a) $\sin\theta \ge 1 - \gamma^2$	b) $\sin\theta \le 1 - \gamma^2$	c) $\sin\theta \le \gamma^2 + 1$	d) $\sin\theta \le \gamma^2 - 1$				
19.			$x_1, x_2,, x_n$ is 2. If $\sum_{i=1}^n x_i = x_i$					
	$x_{i}^{2} = 100$, then <i>n</i> is			·				
	a) 10 or 20	b) <mark>5 or 1</mark> 0	c) 5 or 20	d) 5 or 15				
20.	Median of ${}^{2n}C_0$, ${}^{2n}C_1$, ${}^{2n}C_2$, ${}^{2n}C_3$,, ${}^{2n}C_n$ (where n is even) is							
		b) $^{2n}C_{\frac{n+1}{2}}$	c) $^{2n}C_{\frac{n-1}{2}}$	d) None of these				
	-	2	-					