

Solutions

Class : XIth Date : Subject : MATHS DPP No. :7

Topic :-STATISTICS

122 **(c)**

$$r_{xy} = \frac{\text{cov}(x,y)}{\sqrt{\text{var}(x)\text{var}(y)}}$$
$$= \frac{10.2}{\sqrt{(8.25)(33.96)}} = 0.61$$

124 **(b)**

Let us assume that line of regression y on x is 3x + 12y = 19 and x on y is 3y + 9x = 46.

$$\therefore b_{yx} = -\frac{3}{12} and b_{xy} = -\frac{3}{9} = -\frac{1}{3}$$

$$\therefore r_{xy} = -\sqrt{b_{yx} \times b_{xy}} = -\sqrt{\left(\frac{3}{12}\right) \times \left(\frac{1}{3}\right)}$$

$$= -\sqrt{\frac{1}{12}} = -\sqrt{0.083}$$

$$= -0.289$$
125 (c)
Cov(x,y) = $\frac{1}{n}\Sigma xy - \bar{x}\bar{y}$

$$= \frac{1}{2}(110) - \left(\frac{15}{5}\right)\left(\frac{36}{5}\right) = \frac{2}{5}$$
127 (d)
Let $x_1, x_2, x_3, ..., x_n$ be *n* observation

$$\therefore \ \bar{x} = \frac{\Sigma x_i}{n} ...(i)$$
New mean $= \frac{\Sigma x_i + x_{n+1}}{n+1}$
According to the question $\bar{x} = \frac{\Sigma x_i + x_{n+1}}{n+1}$

$$\Rightarrow (n+1)\bar{x} = n\bar{x} + x_{n+1}$$

$$\Rightarrow x_{n+1} = \bar{x}$$
130 (c)
Let $x_1, x_2, x_3, ..., x_n$ be *n* observations. Then,

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\therefore \text{ New mean, } \overline{X} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i}{\alpha} + 10\right)$$

$$= \frac{1}{\alpha} \left(\frac{1}{n} \sum_{i=1}^{n} x_i\right) + \frac{1}{n} \cdot (10n)$$

$$= \frac{1}{\alpha} \overline{x} + 10 = \frac{\overline{x} + 10\alpha}{\alpha}$$

131 **(b)**

Since, there are 19 observations. So, the middle term is 10th After including 8 and 32, *ie*, 8 will come before 30 and 32 will come after 30 Here, new median will remain 30

132 **(b)** We have,

 $\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}$ $\Rightarrow \sigma^{2} = \frac{1}{n} (1^{2} + 2^{2} + \dots + n^{2}) - \left(\frac{1}{n} (1 + 2 + \dots + n)\right)^{2}$ $\Rightarrow \sigma^2 = \frac{1}{n} \times \frac{n(n+1)(2n+1)}{6} - \left(\frac{n+1}{2}\right)^2 = \frac{n^2 - 1}{12}$ 133 (c) Class f_i $D_i = y_i - A$ Уi $A = 25 f_i d_i f_i d_i^2$ 0-10 1 5 -20 -20 400 10-20 3 15 -10 -30 300 20-30 4 25 0 0 0 30-40 2 35 10 20 200 Total 10 -30 900 $\therefore \ \sigma^2 = \frac{\Sigma f_i d_i^2}{\Sigma f_i} - \left(\frac{\Sigma f_i d_i}{\Sigma f_i}\right)^2$ $=\frac{900}{10}-\left(\frac{-30}{10}\right)^2=90-9$ $\Rightarrow \sigma^2 = 81$ $\Rightarrow \sigma = 9$ 134 (a) Arranging the given values in ascending order of magnitude $x - \frac{7}{2}, x - 3, x - \frac{5}{2}, x - 2, x + \frac{1}{2}, x + 4, x + 5$

 $median = \frac{Value of 4th term + Value of 5th term}{2}$ $= \frac{x - 2 + x - \frac{1}{2}}{2} = x - \frac{5}{4}$ $136 \quad (d)$ The required AM is given by $AM = \frac{1}{n} \sum_{i=1}^{n} (i+1)x_i$ $\Rightarrow AM = \frac{1}{n} \sum_{i=1}^{n} (i+1)i$ $\Rightarrow AM = \frac{1}{n} \left\{ \sum_{i=1}^{n} (i^2 + i) \right\}$ $\Rightarrow AM = \frac{1}{n} \left\{ \sum_{i=1}^{n} i^2 + \sum_{i=1}^{n} i \right\}$ $\Rightarrow AM = \frac{1}{n} \left\{ \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right\}$ $\Rightarrow AM = \frac{(n+1)(2n+1)}{6} + \frac{n+1}{2}$ $\Rightarrow AM = \frac{(n+1)(5n+4)}{6}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	А	С	С	В	С	С	D	С	D	С
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	В	С	А	С	D	А	В	В	С