Class : XIth
Date :

Topic:-STATISTICS

122
(c)
$r_{x y}=\frac{\operatorname{cov}(\mathrm{x}, \mathrm{y})}{\sqrt{\operatorname{var}(\mathrm{x}) \operatorname{var}(\mathrm{y})}}$
$=\frac{10.2}{\sqrt{(8.25)(33.96)}}=0.61$
124 (b)
Let us assume that line of regression y on x is $3 x+12 y=19$ and x on y is $3 y+9 x=46$.

$$
\begin{aligned}
& \therefore b_{y x}=-\frac{3}{12} \text { and } b_{x y}=-\frac{3}{9}=-\frac{1}{3} \\
& \therefore r_{x y}=-\sqrt{b_{y x} \times b_{x y}}=-\sqrt{\left(\frac{3}{12}\right) \times\left(\frac{1}{3}\right)} \\
&=-\sqrt{\frac{1}{12}=-\sqrt{0.083}} \\
&=-0.289
\end{aligned}
$$

125 (c)
$\operatorname{Cov}(x, y)=\frac{1}{n} \Sigma x y-\bar{x} \bar{y}$
$=\frac{1}{2}(110)-\left(\frac{15}{5}\right)\left(\frac{36}{5}\right)=\frac{2}{5}$
127
(d)

Let $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ be n observation
$\therefore \quad \bar{x}=\frac{\sum x_{i}}{n}$
New mean $=\frac{\sum x_{i}+x_{n+1}}{n+1}$
According to the question $\bar{x}=\frac{\sum x_{i}+x_{n+1}}{n+1}$
$\Rightarrow(n+1) \bar{x}=n \bar{x}+x_{n+1}$
$\Rightarrow x_{n+1}=\bar{x}$
130 (c)
Let $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ be n observations. Then,
$\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
\therefore New mean, $\bar{X}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{x_{i}}{\alpha}+10\right)$
$=\frac{1}{\alpha}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)+\frac{1}{n} \cdot(10 n)$
$=\frac{1}{\alpha} \bar{x}+10=\frac{\bar{x}+10 \alpha}{\alpha}$
131
(b)

Since, there are 19 observations. So, the middle term is 10th
After including 8 and 32 , ie, 8 will come before 30 and 32 will come after 30
Here, new median will remain 30
132
(b)

We have,
$\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}$
$\Rightarrow \sigma^{2}=\frac{1}{n}\left(1^{2}+2^{2}+\ldots+n^{2}\right)-\left(\frac{1}{n}(1+2+\ldots+n)\right)^{2}$
$\Rightarrow \sigma^{2}=\frac{1}{n} \times \frac{n(n+1)(2 n+1)}{6}-\left(\frac{n+1}{2}\right)^{2}=\frac{n^{2}-1}{12}$
133

(c)

Class $f_{i} \quad y_{i} \quad D_{i}=y_{i}-A$
$A=25 \quad f_{i} d_{i} f_{i} d_{i}^{2}$

$0-10$	1	5	-20	-20	400
$10-20$	3	15	-10	-30	300
$20-30$	4	25	0	0	0
$30-40$	2	35	10	20	200
Total	10			-30	900

$\therefore \sigma^{2}=\frac{\Sigma f_{i} d_{i}^{2}}{\Sigma f_{i}}-\left(\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}}\right)^{2}$
$=\frac{900}{10}-\left(\frac{-30}{10}\right)^{2}=90-9$
$\Rightarrow \sigma^{2}=81$
$\Rightarrow \sigma=9$

134
 (a)

Arranging the given values in ascending order of magnitude
$x-\frac{7}{2}, x-3, x-\frac{5}{2}, x-2, x+\frac{1}{2}, x+4, x+5$
There are 8 observations in the series, therefore
median $=\frac{\text { Value of 4th term }+ \text { Value of 5th term }}{2}$
$=\frac{x-2+x-\frac{1}{2}}{2}=x-\frac{5}{4}$
136 (d)
The required AM is given by
$\mathrm{AM}=\frac{1}{n} \sum_{i=1}^{n}(i+1) x_{i}$
$\Rightarrow \mathrm{AM}=\frac{1}{n} \sum_{i=1}^{n}(i+1) i$
$\Rightarrow \mathrm{AM}=\frac{1}{n}\left\{\sum_{i=1}^{n}\left(i^{2}+i\right)\right\}$
$\Rightarrow \mathrm{AM}=\frac{1}{n}\left\{\sum_{i=1}^{n} i^{2}+\sum_{i=1}^{n} i\right\}$
$\Rightarrow \mathrm{AM}=\frac{1}{n}\left\{\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}\right\}$
$\Rightarrow \mathrm{AM}=\frac{(n+1)(2 n+1)}{6}+\frac{n+1}{2}$
$\Rightarrow \mathrm{AM}=\frac{(n+1)(5 n+4)}{6}$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | A | C | C | B | C | C | D | C | D | C |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | B | B | C | A | C | D | A | B | B | C |
| | | | | | | | | | | |

