Class: XIth
Date :

Solutions

Topic :-STATISTICS

61
(d)

Median of new set remains the same as that of the original set.
(a)

$$
\begin{aligned}
\bar{x} & =\frac{8+12+13+15+22}{5}=\frac{70}{5}=14 \\
\sigma & =\sqrt{\frac{(8-14)^{2}+(12-14)^{2}+(13-14)^{2}}{+(15-14)^{2}+(22-14)^{2}}} \\
& =\sqrt{\frac{36+4+1+1+64}{5}} \\
& =\sqrt{212}=4.604 \\
& \text { (b) }
\end{aligned}
$$

The formula for combined mean is
$\bar{X}=\frac{n_{1} \bar{X}_{1}+n_{2} \bar{X}_{2}}{n_{1}+n_{2}}$
We are given $\bar{X}=25, \bar{X}_{1}=26, \bar{X}_{2}=21$. Let $n_{1}+n_{2}=100$
and n_{1} denotes men and n_{2} denotes women
$n_{2}=100-n_{1}$
$\therefore 25=\frac{26 n_{1}+21\left(100-n_{1}\right)}{100} \Rightarrow n_{1}=80$
So, $n_{2}=20$
Hence, the percentage of men and women is 80 and 20 respectively
(b)

Taking X as the product of variates $X_{1}, X_{2}, \ldots, X_{r}$ corresponding to r sets of observations i.e.
$X=X_{1} X_{2} \ldots X_{r}$, we have
$\log X=\log X_{1}+\log X_{2}+\ldots \log X_{r}$
$\Rightarrow \sum \log X=\sum \log X_{1}+\sum \log X_{2}+\ldots+\sum \log X_{r}$
$\Rightarrow \frac{1}{n} \sum \log X=\frac{1}{n} \sum \log X_{1}+\frac{1}{n} \sum \log X_{2}+\ldots+\frac{1}{n} \sum \log X_{r}$
$\Rightarrow \log G=\log G_{1}+\log G_{2}+\ldots+\log G_{r}$
$\Rightarrow G=G_{1} G_{2} \ldots G_{r}$
(a)

For a moderately skewed distribution, we have
Mode $=3$ Median -2 Mean
\Rightarrow Mode $=3(6)-2(5)=8$
(d)

Let n_{1} and n_{2} be the number of observations in two groups having means \bar{X}_{1} and \bar{X}_{2} respectively
Then, $\bar{X}=\frac{n_{1} \bar{X}_{1}+n_{2} \bar{X}_{2}}{n_{1}+n_{2}}$
Now, $\bar{X}-\bar{X}_{1}=\frac{n_{1} \bar{X}_{1}+n_{2} \bar{X}_{2}}{n_{1}+n_{2}}-\overline{X_{1}}$
$=n_{2} \frac{\left(\bar{X}_{2}-\bar{X}_{1}\right)}{n_{1}+n_{2}}>0 \quad\left(\because \bar{X}_{2}>\bar{X}_{1}\right)$
$\Rightarrow \bar{X}>\bar{X}_{1}$
And $\bar{X}-\bar{X}_{2}=\frac{n_{1}\left(\bar{X}_{1}-\bar{X}_{2}\right)}{n_{1}+n_{2}}<0 \quad \because \bar{X}_{2}>\bar{X}_{2}$
$\Rightarrow \bar{X}<\bar{X}_{2}$
From relations (i) and (ii), we get $\bar{X}_{1}<\bar{X}<\bar{X}_{2}$
(b)

Given lines are $3 \bar{x}-2 \bar{y}+1=0$
And $2 \bar{x}-\bar{y}-2=0$
On solving Eqs. (i)and (ii), we get $\bar{x}=5, \bar{y}=8$
(c)

It is true that mode can be computed from histogram and median is not independent of change of scale.
But variance is independent of change of origin and not of scale.
(c)

$$
\begin{aligned}
r_{x y} & =\frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{\sum(x-\bar{x})^{2} \sum(y-\bar{y})^{2}}} \\
& =\frac{20}{\sqrt{36 \times 25}}=\frac{2}{3}=0.66
\end{aligned}
$$

(c)

Correlation coefficient,

$$
\begin{aligned}
& r=\frac{n \sum x y-\sum x \sum y}{\sqrt{\left\{n \sum x^{2}-\left(\sum x\right)^{2}\right\}} \mid\left\{n \sum y^{2}-\left(\sum y\right)^{2}\right\}} \\
& =\frac{10(220)-40 \times 50}{\sqrt{10(200)-(40)^{2}} \sqrt{10(262)-(50)^{2}}} \\
& =\frac{200}{20 \times 10.954}=\frac{200}{219.08}=0.91
\end{aligned}
$$

(a)

Let us assume that line of regression y on $\mathrm{x}+4 \mathrm{y}=3$ and x on y is $3 x+y=15$.

$$
\therefore \text { put } y=3 \text { in } 3 x+y=15
$$

$$
\begin{aligned}
& \Rightarrow 3 x=15-3 \\
& x=4
\end{aligned}
$$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | D | A | B | B | D | C | A | A | D | B |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | B | C | C | B | A | B | C | C | A | C |
| | | | | | | | | | | |

