Class: XIth
Subject : MATHS
Solutions
Date :
DPP No. :3
(d)

Here, $N=\Sigma f=20$
$\mathrm{Q}_{1}=\frac{N+1}{4} t h=\left(\frac{21}{4}\right) t h=3 r d$ observation
Similarly, $Q_{3}=3\left(\frac{N+1}{4}\right)$ th
$=\left(\frac{63}{4}\right) t h=5$ th observation
$\therefore \quad \mathrm{QD}=\frac{1}{2}\left(Q_{3}-Q_{1}\right)=\frac{1}{2}(5-3)=1$

Topic :-STATISTICS

44 (a)
The required mean X is given by
$\bar{X}=\frac{0 \times{ }^{n} C_{0} q^{n} p^{0}+1 \times{ }^{n} C_{1} q^{n-1} p+\ldots+n \times{ }^{n} C_{n} q^{0} p^{n}}{{ }^{n} C_{0} q^{n} p^{0}+{ }^{n} C_{1} q^{n-1} p^{1}+\ldots+{ }^{n} C_{n} q^{n-n} p^{n}}$
$\Rightarrow \bar{X}=\frac{\sum_{r=0}^{n} r \times{ }^{n} C_{r} q^{n-r} p^{r}}{\sum_{r=0}^{n}{ }^{n} C_{r} q^{n-r} p^{r}}$
$\Rightarrow \bar{X}=\frac{\sum_{r=1}^{n} r \times \frac{n}{r}{ }^{n-1} C_{r-1} q^{n-r} \times p \times p^{r-1}}{\sum_{r=0}^{n}{ }^{n} C_{r} q^{n-r} p^{r}}$
$\Rightarrow \bar{X}=\frac{n p\left\{\sum_{r=1}^{n}{ }^{n-1} C_{r-1} p^{r-1} q^{(n-1)-(r-1)}\right\}}{\sum_{r=0}^{n}{ }^{n} C_{r} q^{n-r} p^{r}}$
$\Rightarrow \bar{X}=\frac{n p(q+p)^{n-1}}{(q+p)^{n}}$
$\Rightarrow \bar{X}=n p \quad[\because q+p=1]$
46 (a)
Let the mean of the remaining 4 observations be \bar{X}_{1}. Then,
$M=\frac{a+4 \bar{X}_{1}}{(n-4)+4} \Rightarrow \bar{X}_{1}=\frac{n M-a}{4}$
48 (b)
Total number of workers $=300$
Retrenched $=15 \%$ of $300=45$
These are all from age group ($20-28$)
Prematured retried $=20 \%$ of $300=60$
$=18$ from age group $52-60$
And 42 from age group ($44-52$)
\therefore Age limit of workers retained is $28-44$
49 (b)
Total number of students $=100$
Average marks of the class $=72$
Total marks of the class $=72 \times 100=7200$

And total marks of the boys

$$
=70 \times 75=5250
$$

So, total marks of the girls=

$$
7200-5250=1950
$$

Hence, average of girls $=\frac{1950}{30}=65$
50 (c)
Let n be the number of newspapers which are read
Then, $60 n=(300) \times 5$
$\Rightarrow n=25$
52 (a)
Since, $\mathrm{MD}=\frac{4}{5} \sigma, \mathrm{QD}=\frac{2}{3} \sigma$
$\therefore \frac{\mathrm{MD}}{\mathrm{QD}}=\frac{6}{5}$
$\Rightarrow \mathrm{QD}=\frac{5}{6}(\mathrm{MD})=\frac{5}{6}(15)=12.5$
$54 \quad$ (c)
$\bar{x}=\frac{\text { Sum of quantities }}{n}=\frac{\frac{n}{2}(a+1)}{n}$
$=\frac{1}{2}[1+1+100 d]=1+50 d$
$\therefore M D=\left.\frac{1}{n} \Sigma\right|^{\prime} x_{i}-\overline{x \mid}$
$\Rightarrow 255=\frac{1}{101}[50 d+49 d+\ldots+d+0+d+\ldots$
$=\frac{2 d}{101}\left[\frac{50 \times 51}{2}\right]$
$\Rightarrow d=\frac{255 \times 101}{50 \times 51}=10.1$
55 (d)
Since, 44 kg is replaced by 46 kg and 27 kg is replaced by 25 kg , then the given series becomes $31,35,25,29,32,43,37,41,34,28$,
$36,46,45,42$, and 30 .
On arranging this series in ascending order, we get
$25,28,29,30,31,32,34,35,36,37,41,42$, 43, 45, 46.
Total numbers of students are 15 , therefore middle term is $8^{\text {th }}$ whose corresponding value is 35 .

56 (d)

CI	\boldsymbol{x}	\boldsymbol{f}	$\boldsymbol{x f}$
$0-10$	5	4	20
$10-20$	15	6	90
$20-30$	25	10	250
$30-40$	35	16	560
$40-50$	45	14	630
		$\sum f=50$	$\sum f x=1550$

\therefore Mean $\frac{\sum f x}{\sum f}=\frac{1550}{50}=31$

57
(b)

Given, $\sigma_{10}^{2}=\frac{99}{12}=\frac{33}{4}$
$\Rightarrow \sigma_{10}=\frac{\sqrt{33}}{2}$
SD of required series $=3 \sigma_{10}=\frac{3 \sqrt{33}}{2}$
58
(b)

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a raw data. Then,
$\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}$
If each value is multiplied by h, then the values are $h x_{1}, h x_{2}, \ldots, h x_{n}$. The AM of the new values is
$\frac{h x_{1}+h x_{2}+\ldots+h x_{n}}{n}=h \bar{X}$
The variance σ_{1}^{2} of the new set of values is given by
$\sigma_{1}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(h x_{i}-h \bar{X}\right)^{2}=h^{2}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}\right\}=h^{2} \sigma^{2}$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | D | C | B | A | A | A | D | B | B | C |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | A | A | B | C | D | D | B | B | B | A |
| | | | | | | | | | | |

