Class: XIth
Date :

Solutions

Topic :-STATISTICS

1
(d)

Since variance is independent of change of origin. Hence, variance of observations $101,102, \ldots ., 200$ is same as variance of observations $151,152, \ldots, 250$.
$\therefore V_{A}=V_{B}$
$\Rightarrow \frac{V_{A}}{V_{B}}=1$
(a)

Let $x_{1}, x_{2}, \ldots, x_{n}$ be n values of X. Then,
$\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}$
The variable $a X+b$ takes values $a x_{1}+b, a x_{2}+b, \ldots, a x_{n}+b$ with mean $a \bar{X}+b$
$\therefore \operatorname{Var}(a X+b)=\frac{1}{n} \sum_{i=1}^{n}\left\{\left(a x_{i}+b\right)-(a \bar{X}+b)\right\}^{2}=a^{2} \frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}$
$\Rightarrow($ S.D. of $a X+b)=\sqrt{a^{2} \frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}}=|a| \sigma$
(c)

Total weight of 9 items $=15 \times 9=135$
And total weight of 10 items $=16 \times 10=160$
\therefore weight of 10 th item $=160-135=25$
5
(d)

$$
\begin{aligned}
& \bar{x}=\frac{-1+0+4}{3}=1 \\
& \therefore M D=\frac{\sum \mid x_{i}-\bar{x}}{n} \\
& =\frac{|-1-1|+|0-1|+|4-1|}{3} \\
& =2
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \theta=\tan ^{-1}\left\{\frac{\frac{2}{3} \times \frac{4}{3}-1}{\frac{2}{3}+\frac{4}{3}}\right\} \\
& \Rightarrow \theta=\tan ^{-1}\left\{-\frac{\frac{1}{9}}{2}\right\}=\tan ^{-1}\left\{-\frac{1}{18}\right\}
\end{aligned}
$$

\therefore Angle is acute angle.
$\therefore \mathrm{k}=\frac{1}{18}$
(a)

According to the given condition

$$
\begin{aligned}
& 6.80=\frac{\left[\begin{array}{c}
(6-a)^{2}+(6-b)^{2}+(6-8)^{2} \\
+(6-5)^{2}+(6-10)^{2}
\end{array}\right]}{5} \\
& \Rightarrow 34=(6-a)^{2}+(6-b)^{2}+4+1+16 \\
& \Rightarrow(6-a)^{2}+(6-b)^{2}=13=9+4=3^{2}+2^{2} \\
& \Rightarrow a=3, b=4
\end{aligned}
$$

(b)

On arranging the terms in increasing order of magnitude

$$
40,42,45,47,50,51,54,55,57
$$

Number of terms , $\mathrm{N}=9$
\therefore Median $=\left(\frac{9+1}{2}\right)$ th term $=5$ th term $=50 \mathrm{~kg}$

Weight (kg)	Deviation from median (d)	$\mid \mathbf{d \|}$
40	-10	10
42	-8	8
45	-5	5
47	-3	3
50	0	0
51	1	1
54	4	4
55	5	5
57	7	7
		$\|\mathrm{~d}\|=43$

MD from median $=\frac{43}{9}=4.78 \mathrm{~kg}$
\therefore Coefficient of MD from median
$=\frac{\mathrm{MD}}{\text { median }}$
$=\frac{4.78}{50}=0.0956$
(c)

The required weighted mean is given by
$\bar{X}=\frac{1 \cdot 1+2 \cdot 2+3 \cdot 3+\ldots+n \cdot n}{1+2+3+\ldots+n}$
$\Rightarrow \bar{X}=\frac{\frac{n(n+1)(2 n+1)}{6}}{\frac{n(n+1)}{2}}=\frac{2 n+1}{3}$
(a)

We have, $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
$\therefore \quad \operatorname{var}(\bar{x})=\frac{1}{n^{2}}\left[\sum_{i=1}^{n} \operatorname{var}\left(x_{i}\right)+2 \sum_{i \neq j}^{n} \operatorname{cov}\left(x_{i}, x_{j}\right)\right]$
$=\frac{1}{n^{2}}\left[n \sigma^{2}\right]=\frac{\sigma^{2}}{n}$
$\left[\because x_{i}\right.$ and x_{j} are independent variable, therefore $\left.\operatorname{cov}\left(x_{i}, x_{j}\right)=0\right]$
(c)
$r=\frac{\frac{1}{n} \Sigma x y-\bar{x} \bar{y}}{\sigma_{x} \times \sigma_{y}}=\frac{\frac{1}{10} \times 12-0}{2 \times 3}=0.2$
(b)

In the given distribution 6 occurs most of the times hence mode of the series $=6$.

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | D | D | A | C | D | C | A | B | C | C |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | A | D | C | B | A | B | C | B | B | D |
| | | | | | | | | | | |

