Class: XIth
Date :

Solutions

142 (d)

Clearly, R is neither reflexive, nor symmetric and not transitive
143
(d)

Clearly, given relation is an equivalence relation
145
(c)

Each subset will contain 3 and any number of elements from the remaining 3 elements 1, 2 and 4 So, required number of elements $=2^{2}=8$

146
 (a)

Since $(1,1),(2,2),(3,3) \in R$. Therefore, R is reflexive. We observe that $(1,2) \in R$ but $(2,1) \notin R$, therefore R is not symmetric.
It can be easily seen that R is transitive
147
(b)

(ii) $A \cap B^{c} \cap C^{6}$

From figures (i), (ii) and (iii), we get
$(A \cup B \cup C) \cap\left(A \cap B^{C} \cap C^{C}\right) \cap C^{C}=\left(B^{C} \cap C^{C}\right)$
148 (d)
A relation on set A is a subset of $A \times A$
Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Then, a reflexive relation on A must contain at least n elements (a_{1}, a_{1}), (a_{2}, a_{2}) ,..., $\left(a_{n}, a_{n}\right)$
\therefore Number of reflexive relations on A is $2^{n^{2}-n}$
Clearly, $n^{2}-n=n, n^{2}-n=n-1, n^{2}-n=n^{2}-1$ have solutions in N but $n^{2}-n=n+1$ is not solvable in N.
So, 2^{n+1} cannot be the number of reflexive relations on A

We have,
$A \Delta B=(A \cup B)-(A \cup B)$
$\Rightarrow n(A \Delta B)=n(A)+n(B)-2 n(A \cap B)$
So, $n(A \Delta B)$ is greatest when $n(A \cap B)$ is least
It is given that $A \cap B \neq \phi$. So, least number of elements in $A \cap B$ can be one
\therefore Greatest possible value of $n(A \Delta B)$ is $7+6-2 \times 1=11$
150 (d)
Let $R=\{(x, y): y=a x+b\}$. Then,
$(-2,-7),(-1,-4) \in R$
$\Rightarrow-7=-2 a+b$ and $-4=-a+b$
$\Rightarrow a=3, b=-1$
$\therefore y=3 x-1$
Hence, $R=\{(x, y): y=3 x-1,-2 \leq x<3, x \in Z\}$
151 (a)
Let U be the set of all students in the school. Let C, H and B denote the sets of students who played cricket, hockey and basketball respectively. Then,
$n(\mathcal{U})=800, n(C)=224, n(H)=240, n(B)=336$
$n(H \cap B)=64, n(B \cap C)=80, n(H \cap C)=40$
and, $n(H \cap B \cap C)=24$
\therefore Required number
$=n\left(C^{\prime} \cap H^{\prime} \cap B^{\prime}\right)$
$=n(C \cup H \cup B)^{\prime}$
$=n(\mathcal{U})-n(C \cup H \cup B)$
$=n(\mathcal{U})-\{n(C)+n(H)+n(B)-n(C \cap H)-n(H \cap B)-n(B \cap C)+n(C \cap H \cap B)\}$
$=800-\{224+240+336+336-64-80-40+24\}$
$=800-640=160$
152 (c)
According to question,

$$
2^{m}-2^{n}=48
$$

This is possible only if $m=6$ and $n=4$.

153
 (a)

From Venn-Euler's Diagram it is clear that

$(A \cup B)^{\prime} \cup\left(A^{\prime} \cap B\right)=A^{\prime}$
154
(b)

For any $a, b \in R$
$a \neq b \Rightarrow b \neq a \Rightarrow R$ is symmetric
Clearly, $2 \neq-3$ and $-3 \neq 2$, but $2=2$. So, R is not transitive.
Clearly, R is not reflexive

155
(a)

We have,
$A \Delta B=(A \cup B)-(A \cup B)$
$\Rightarrow n(A \Delta B)=n(A)+n(B)-2 n(A \cap B)$
So, $n(A \Delta B)$ is greatest when $n(A \cap B)$ is least
It is given that $A \cap B \neq \phi$. So, least number of elements in $A \cap B$ can be one
\therefore Greatest possible value of $n(A \Delta B)$ is $7+6-2 \times 1=11$
156 (c)
Since $x \nless x$, therefore R is not reflexive
Also, $x<y$ does not imply that $y<x$
So R is not symmetric
Let $x R y$ and $y R z$. Then, $x<y$ and $y<z . \Rightarrow x<z$ i.e. $x R z$
Hence, R is transitive
157 (b)
Number of elements common to each set is $99 \times 99=99^{2}$.
158 (b)
Given, $A \cap X=B \cap X=\phi$
$\Rightarrow A$ and X, B and X are disjoint sets.
Also, $\quad A \cup X=B \cup X \Rightarrow A=B$
$160 \quad$ (c)
Clearly, R is reflexive and symmetric but it is not transitive

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | B | D | D | A | C | A | B | D | A | D |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | A | C | A | B | A | C | B | B | A | C |
| | | | | | | | | | | |

