

Class : XIth Date :

Solutions

Subject : MATHS **DPP No. :8**

142 (d)

Clearly, *R* is neither reflexive, nor symmetric and not transitive

143 (d)

Clearly, given relation is an equivalence relation

145 (c)

Each subset will contain 3 and any number of elements from the remaining 3 elements 1, 2 and 4 So, required number of elements $= 2^2 = 8$

Since $(1,1),(2,2),(3,3) \in R$. Therefore, *R* is reflexive. We observe that $(1,2) \in R$ but $(2,1) \notin R$, therefore *R* is not symmetric.

It can be easily seen that *R* is transitive

147 (b)

From figures (i), (ii) and (iii), we get $(A \cup B \cup C) \cap (A \cap B^C \cap C^C) \cap C^C = (B^C \cap C^C)$

148 (d)

A relation on set *A* is a subset of $A \times A$

Let $A = \{a_1, a_2, ..., a_n\}$. Then, a reflexive relation on A must contain at least n elements $(a_1, a_1), (a_2, a_2)$ \dots (a_n, a_n)

: Number of reflexive relations on A is 2^{n^2-n} Clearly, $n^2 - n = n$, $n^2 - n = n - 1$, $n^2 - n = n^2 - 1$ have solutions in N but $n^2 - n = n + 1$ is not solvable in *N*.

So, 2^{n+1} cannot be the number of reflexive relations on *A*

149 (a) We have. $A \Delta B = (A \cup B) - (A \cup B)$ $\Rightarrow n(A \Delta B) = n(A) + n(B) - 2 n(A \cap B)$ So, $n(A \Delta B)$ is greatest when $n(A \cap B)$ is least It is given that $A \cap B \neq \phi$. So, least number of elements in $A \cap B$ can be one \therefore Greatest possible value of $n(A \Delta B)$ is $7 + 6 - 2 \times 1 = 11$ 150 (d) Let $R = \{(x, y): y = ax + b\}$. Then, $(-2, -7), (-1, -4) \in R$ $\Rightarrow -7 = -2a + b$ and -4 = -a + b $\Rightarrow a = 3, b = -1$ $\therefore y = 3x - 1$ Hence, $R = \{(x,y): y = 3x - 1, -2 \le x < 3, x \in Z\}$ 151 (a) Let \mathcal{U} be the set of all students in the school. Let C, H and B denote the sets of students who played cricket, hockey and basketball respectively. Then, n(U) = 800, n(C) = 224, n(H) = 240, n(B) = 336 $n(H \cap B) = 64, n(B \cap C) = 80, n(H \cap C) = 40$ and, $n(H \cap B \cap C) = 24$ ∴ Required number $= n(C' \cap H' \cap B')$ $= n(C \cup H \cup B)'$ $= n(\mathcal{U}) - n(\mathcal{C} \cup H \cup B)$ $= n(\mathcal{U}) - \{n(\mathcal{C}) + n(\mathcal{H}) + n(\mathcal{B}) - n(\mathcal{C} \cap \mathcal{H}) - n(\mathcal{H} \cap \mathcal{B}) - n(\mathcal{B} \cap \mathcal{C}) + n(\mathcal{C} \cap \mathcal{H} \cap \mathcal{B})\}$ $= 800 - \{224 + 240 + 336 + 336 - 64 - 80 - 40 + 24\}$ = 800 - 640 = 160152 (c) According to question, $2^m - 2^n = 48$ This is possible only if m = 6 and n = 4. 153 (a) From Venn-Euler's Diagram it is clear that $(A \cup B)'$ U $(A' \cap B)$ A В $(A \cup B)' \cup (A' \cap B) = A'$ 154 **(b)** For any $a, b \in R$ $a \neq b \Rightarrow b \neq a \Rightarrow R$ is symmetric Clearly, $2 \neq -3$ and $-3 \neq 2$, but 2 = 2. So, *R* is not transitive. Clearly, *R* is not reflexive

155 (a) We have, $A \Delta B = (A \cup B) - (A \cup B)$ $\Rightarrow n(A \Delta B) = n(A) + n(B) - 2 n(A \cap B)$ So, $n(A \Delta B)$ is greatest when $n(A \cap B)$ is least It is given that $A \cap B \neq \phi$. So, least number of elements in $A \cap B$ can be one : Greatest possible value of $n(A \Delta B)$ is $7 + 6 - 2 \times 1 = 11$ 156 (c) Since $x \not< x$, therefore *R* is not reflexive Also, x < y does not imply that y < xSo *R* is not symmetric Let *x R y* and *y R z*. Then, x < y and $y < z \Rightarrow x < z$ i.e. *x R z* Hence, *R* is transitive 157 **(b)** Number of elements common to each set is $99 \times 99 = 99^2$. 158 (b) Given, $A \cap X = B \cap X = \phi$ \Rightarrow A and X, B and X are disjoint sets. $A \cup X = B \cup X \Rightarrow A = B$ Also, 160 (c)

Clearly, *R* is reflexive and symmetric but it is not transitive

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	D	D	А	С	Α	В	D	А	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	A	С	А	В	А	С	В	В	А	С