Class: XIth
Subject : MATHS
Date :
DPP No. :7

Topic :-SETS

1. If S is the set of squares and R is the set of rectangles, then $(S \cup R)-(S \cap S)$ is
a) S
b) R
c) Set of squares but not rectangles
d) Set of rectangles but not squares
2. Let X be a family of sets and R be a relation on X defined by ' A is disjoint from B^{\prime}.Then, R is
a) Reflexive
b) Symmetric
c) Antisymmetric
d) Transitive
3. If $A=\{x, y\}$, then the power set of A is
a) $\left\{x^{y}, y^{x}\right\}$
b) $\{\phi, x, y\}$
c) $\{\phi,\{x\},\{2 y\}\}$
d) $\{\phi,\{x\},\{y\},\{x, y\}\}$
4. In a town of 10,000 familiesit was found that 40% families buy newspaper $A, 20 \%$ families buy newspaper B and 10% families buy newspaper $C, 5 \%$ families buy A and $B, 3 \%$ buy B and C and 4% buy A and C. If 2% families buy all the three newspapers, then the number of families which buy A only is
a) 3100
b) 3300
c) 2900
d) 1400
5. Let R and S be two equivalence relations on a set A.Then,
a) $R \cup S$ is an equivalence relation on A
b) $R \cap S$ is an equivalence relation on A
c) $R-S$ is an equivalence relation on A
d) None of these
6. Which of the following is true?
a) $A \cap \phi=A$
b) $A \cap \phi=\phi$
c) $A \cap \phi=U$
d) $A \cap \phi=A^{\prime}$
7. Let $A=\{p, q, r\}$. Which of the following is not an equivalence relation on A ?
a) $R_{1}=\{(p, q),(q, r),(p, r),(p, p)\}$
b) $R_{2}=\{(r, q),(r, p),(r, r),(q, q)\}$
c) $R_{3}=\{(p, p),(q, q),(r, r) \cdot(p, q)\}$
d) None of these
8. Let $A=\{1,2,3,4\}, B=\{2,4,6\}$. Then, the number of sets C such that $A \cap B \subseteq C \subseteq A \cup B$ is
a) 6
b) 9
c) 8
d) 10
9. If $A=\left\{p \in N: p\right.$ is a prime and $p=\frac{7 n^{2}+3 n+3}{n}$ for some $\left.n \in N\right\}$, then the number of elements in the set A, is
a) 1
b) 2
c) 3
d) 4
10. Let $Y=\{1,2,3,4,5\}, A\{1,2\}, B=\{3,4,5\}$ and ϕ denotes null set. If $(A \times B)$ denotes cartesian product of the sets A and B; then $(Y \times A) \cap(Y \times B)$ is
a) Y
b) A
c) B
d) ϕ
11. If $n(A)$ denotes the number of elements in the set A and if $n(A)=4, n(B)=5$ and $n(A \cap B)=3$, then $n[(A \times B) \cap(B \times A)]$ is equal to
a) 8
b) 9
c) 10
d) 11
12. Universal set, $U=\left\{x: x^{5}-6 x^{4}+11 x^{3}-6 x^{2}=0\right\}$

And $\quad A=\left\{x: x^{2}-5 x+6=0\right\}$

$$
B=\left\{x: x^{2}-3 x+2=0\right\}
$$

Then, $(A \cap B)^{\prime}$ is equal to
a) $\{1,3\}$
b) $\{1,2,3\}$
c) $\{0,1,3\}$
d) $\{0,1,2,3\}$
13. If R be a relation $<$ from $A=\{1,2,3,4\}$ to $B=\{1,3,5\}$ i.e. $(a, b) \in R \Leftrightarrow a<b$, then $R o R^{-1}$ is
a) $\{(1,3),(1,5),(2,3),(2,5),(3,5),(4,5)\}$
b) $\{(3,1),(5,1),(3,2),(5,2),(5,3),(5,4)\}$
c) $\{(3,3),(3,5),(5,3),(5,5)\}$
d) $\{(3,3),(3,4),(4,5)\}$
14. A relation between two persons is defined as follows:
$a R b \Leftrightarrow a$ and b born in different months. Then, R is
a) Reflexive
b) Symmetric
c) Transitive
d) Equivalence
15. If A and B are two sets such that $n(A \cap \bar{B})=9, n(\bar{A} \cap B)=10$ and $n(A \cup B)=24$, then $n(A \times B)$ $=$
a) 105
b) 210
c) 70
d) None of these
16. If A and B are two sets, then $A-(A-B)$ is equal to
a) B
b) $A \cup B$
c) $A \cap B$
d) $B-A$
17. If $A=\{1,2,3,4\}$, then the number of subsets of A that contain the element 2 but not 3 , is
a) 16
b) 4
c) 8
d) 24
18. Let A be a set of compartments in a train. Then the relation R defined on A as $a R b$ iff " a and b have the link between them", then which of the following is true for R ?
a) Reflexive
b) Symmetric
c) Transitive
d) Equivalence
19. Let R and S be two relations on a set A.Then, which one of the following is not true?
a) Rand S are transitive, then $R \cup S$ is also transitive
b) Rand S are transitive, then $R \cap S$ is also transitive
c) Rand S are reflexive, then $R \cap S$ is also reflexive
d) R and S are symmetric, then $R \cup S$ is also symmetric
20. The relation "is a factor of" on the set N of all natural numbers is not
a) Reflexive
b) Symmetric
c) Antisymetric
d) Transitive

