Class: XIth
Date :

Solutions

121
 (d)

Clearly, $S \subset R$
$\therefore S \cup R=R$ and $S \cap R=S$
$\Rightarrow(S \cap R)-(S \cap R)=$ Set of rectangles which are not squares
122
(b)

Clearly, the relation is symmetric but it is neither reflexive nor transitive
123
(d)

Since, power set is a set of all possible subsets of a set.
$\therefore \quad P(A)=\{\phi,\{x\},\{y\},\{x, y\}\}$
124
(b)

We have,
$N=10,000, n(A)=40 \%$ of $10,000=4000$,
$n(B)=2000, n(C)=1000, n(A \cap B)=500$,
$n(B \cap C)=300, n(C \cap A)=400, n(A \cap B \cap C)=200$
Now,
Required number of families $=$
$n(A \cap \bar{B} \cap \bar{C})=n\left(A \cap(B \cup C)^{\prime}\right)$
$=n(A)-n(A \cap(B \cup C))$
$=n(A)-n((A \cap B) \cup(A \cap C))$
$=n(A)-\{n(A \cap B)+n(A \cap C)-n(A \cap B \cap C)\}$
$=4000-(500+400-200)=3300$

126
 (b)

$A \cap \phi=\phi$ is true.
128
(c)
$A \cap B=\{2,4\}$
$\{A \cap B\} \subseteq\{1,2,4\},\{3,2,4\},\{6,2,4\},\{1,3,2,4\}$,
$\{1,6,2,4\},\{6,3,2,4\},\{2,4\},\{1,3,6,2,4\} \subseteq A \cup B$
$\Rightarrow n(C)=8$
129
(a)

We have,
$p=\frac{7 n^{2}+3 n+3}{n} \Rightarrow p=7 n+3+\frac{3}{n}$

It is given that $n \in N$ and p is prime. Therefore, $n=1$
$\therefore n(A)=1$
$130 \quad$ (d)
$(Y \times A)=\{(1,1),(1,2),(2,1),(2,2)$,
$(3,1),(3,2),(4,1),(4,2),(5,1),(5,2)\}$
$\operatorname{And}(Y \times B)=\{(1,3),(1,4),(1,5),(2,3)$,
$(2,4),(2,5),(3,3),(3,4),(3,5),(4,3)$,
$(4,4),(4,5),(5,3),(5,4),(5,5)\}$
$\therefore(Y \times A) \cap(Y \times B)=\phi$
131 (b)
Given, $n(A)=4, \quad n(B)=5$ and $n(A \cap B)=3$
$\therefore n[(A \times B) \cap(B \times A)]=3^{2}=9$
132
(c)
$U=\left\{x: x^{5}+6 x^{4}+11 x^{3}-6 x^{2}=0\right\}=\{0,1,2,3\}$
$A=\left\{x: x^{2}-5 x+6=0\right\}=\{2,3\}$
And $B=\left\{x: x^{2}-3 x+2=0\right\}=\{2,1\}$
$\therefore(A \cap B)^{\prime}=U-(A \cap B)$
$=\{0,1,2,3\}-\{2\}=\{0,1,3\}$
133
(c)

We have,
$R=\{(1,3),(1,5),(2,3),(2,5),(3,5),(4,5)\}$
$\Rightarrow R^{-1}=\{(3,1),(5,1),(3,2),(5,2),(5,3),(5,4)\}$
Hence, R o $R^{-1}=\{(3,3),(3,5),(5,3),(5,5)\}$
134 (b)
Let $(a, b) \in R$. Then,
a and b are born in different months $\Rightarrow(b, a) \in R$
So, R is symmetric
Clearly, R is neither reflexive nor transitive
136 (c)

From the venn diagram
$A-(A-B)=A \cap B$
137
(b)

Required number of subsets is equal to the number of subsets containing 2 and any number of elements from the remaining elements 1 and 4
So, required number of elements $=2^{2}=4$
140
(b)

Clearly, 2 is a factor of 6 but 6 is not a factor of 2 . So, the relation 'is factor of' is not symmetric. However, it is reflexive and transitive

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | D | B | D | B | B | B | D | C | A | D |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | B | C | C | B | B | C | B | B | A | B |
| | | | | | | | | | | |

