

Class: XIth
Date:
Subject: MATHS
DPP No.:6

Topic:-sets											
1.	Let Z denote the set	of integers, then									
{ <i>x</i> ∈	$x \in Z: x - 3 < 4 $ $n $ $\{x \in Z: x - 4 < 5 \} = $										
	a) $\{-1,0,1,2,3,4\}$	b) { -1,0,1,2,3,4,5}	c) {0,1,2,3,4,5,6}	d)							
	{-1,0,1,2,3,5,6,7,8,9}										
2.	Let R be a reflexive relation on a finite set A having n elements, and let there be m ordered										
pairs in R.Then,											
	a) $m \ge n$	b) $m \le n$	c) $m = n$	d) None of these							
3.	Let $A = \{1, 2, 3\}, B = \{3, 4\}, C = \{4, 5, 6\}$. Then, $A \cup (B \cap C)$ is										
	a) {3}	b){1, 2, 3, 4}	c) {1, 2, 5, 6}	d){1, 2, 3, 4, 5, 6}							
4.											
B =	$B = \{(x,y): x^2 + y^2 = 8, x, y \in R\}, $ then										
	a) $A \cap B = \phi$										
	b) $A \cap B$ contains one point only										
	c) $A \cap B$ contains two points only										
	d) $A \cap B$ contains 4 points only										
5.	If $R = \{(a,b): a+b = a$	(a + b) is a relation define	ed on a set $\{-1, 0, 1\}$, th	en R is							
	a) Reflexive	b) S <mark>ymm</mark> etric	c) Anti symmetric	d) Transitive							
6.	If $n(A \cap B) = 5$, $n(A \cap B) = 5$	$C) = \frac{7 \text{ and } n(A \cap B \cap C)}{2}$	= 3, then the minimum	possible value of							
n(B	$(\cap C)$ is										
	a) 0	b) 1	c) 3	d) 2							
		(3,5) is defined on the									
nati	ural numbers. The minir	num number of element	s to be included in R so	that R is an equivalence							
rela	tion, is										
	a) 5	b)6	c) 7	d)8							
8.	If $A = \{1, 2, 3\}$, then the relation $R = \{(1,1),(2,2),(3,1),(1,3)\}$ is										
	a) Reflexive	b) Symmetric	,	d) Equivalence							
9.		set A such that $R = R^{-1}$,									
	•	b) Symmetric	c) Transitive	d) None of these							
10.	InQ.No. 6, $\bigcap_{n=3}^{10} A_n =$										
	a) {3,5,7,11,13,17,19}		c) {2,3,5,7,11,13,17}								
11. The number of elements in the set $\{(a,b): 2a^2 + 3b^2 = 35, a, b \in Z\}$, where Z is the set of all											
integers, is											
	a) 2	b)4	c) 8	d) 12							
12.	If $A = \{a, b, c\}$, $B = \{b, c, d\}$ and $C = \{a, d, c\}$, then $(A - B) \times (B \cap C)$ is equal to										
	a) $\{(a, c), (a, d)\}$	b) $\{(a, b), (c, d)\}$	c) $\{(c, a), (d, a)\}$	d { $(a, c), (a, d), (b, d)$ }							

13.	A class has 175 stude:	nts. The fo	llowing data sh	ows th	e number	of students opting one or more			
sub	jects. Mathematics 100); Physics 7	70; Chemistry 4	lo; Mat	hematics a	and Physics 30; Mathematics			
and	Chemistry 28; Physics	and Chem	nistry 23; Math	ematics	s, Physics a	and Chemistry 18. Hoe many			
students have offered Mathematics alone?									
	a) 35	b) 48		c) 60		d) 22			
14.	If $A = \{1, 2, 3\}$, $B\{3, 4\}$, $C\{4, 5, 6\}$. Then, $A \cup (B \cap C)$ is								
	a) {1, 2}	b){φ}		c) {4,	5}	d){1, 2, 3, 4}			
15.	If $A \subseteq B$, then $B \cup A$ is equal to								
	a) $B \cap A$	b) <i>A</i>		c) <i>B</i>		d) None of these			
16.	If $n(u) = 100, n(A) = 50, n(B) = 20$ and $n(A \cap B) = 10$, then $n\{(A \cup B)^c\}$								
	a) 60	b)30		c) 40		d) 20			
17.	If A is a non-empty set, then which of the following is false?								
p: Every reflexive relation is a symmetric relation									
q: Every antisymmetric relation is reflexive									
Wh	ich of the following is/	are true?							
	a) palone	b) q alor	ie	c) Bot	h p and q	d) Neither p nor q			
18.	8. Two points P and Q in a plane are related if $OP = OQ$, where O is a fixed point. This relationship								
	a) Partial order relation b) Equivalence relation								
	c) Reflexive but not symmetric								
	d) Reflexive but not transitive								
19.	In a city 20% of the po	opulat <mark>ion t</mark>	ravels by car, 5	50% tra	vels by bu	s and 10% travels by both car			
and	bus. Then, persons tra	vellin <mark>g by</mark>	car or bus is						
	a) 80%	b) 40%		c) 60%	6	d) 70%			
20.	If $n(A \cap B = 10, n(B \cap B))$	(C) = 20) a	and $n(A \cap C) =$	30, the	en the grea	atest possible value of			
n(A	$\cap B \cap C$) is								
	a) 15	b) 20		c) 10		d)4			