Class: XIth
Subject : MATHS
Date :
DPP No. :6

Topic :-SETS

1. Let Z denote the set of integers, then
$\{x \in Z:|x-3|<4\} n\{x \in Z:|x-4|<5\}=$
a) $\{-1,0,1,2,3,4\}$
b) $\{-1,0,1,2,3,4,5\}$
c) $\{0,1,2,3,4,5,6\}$
d)
$\{-1,0,1,2,3,5,6,7,8,9\}$
2. Let R be a reflexive relation on a finite set A having n elements, and let there be m ordered pairs in R.Then,
a) $m \geq n$
b) $m \leq n$
c) $m=n$
d) None of these
3. Let $A=\{1,2,3\}, B=\{3,4\}, C=\{4,5,6\}$. Then, $A \cup(B \cap C)$ is
a) $\{3\}$
b) $\{1,2,3,4\}$
c) $\{1,2,5,6\}$
d) $\{1,2,3,4,5,6\}$
4. If $A=\left\{(x, y): y=\frac{4}{x}, x \neq 0\right\}$ and
$B=\left\{(x, y): x^{2}+y^{2}=8, x, y \in R\right\}$, then
a) $A \cap B=\phi$
b) $A \cap B$ contains one point only
c) $A \cap B$ contains two points only
d) $A \cap B$ contains 4 points only
5. If $R=\{(a, b):|a+b|=a+b\}$ is a relation defined on a set $\{-1,0,1\}$, then R is
a) Reflexive
b) Symmetric
c) Anti symmetric
d) Transitive
6. If $n(A \cap B)=5, n(A \cap C)=7$ and $n(A \cap B \cap C)=3$, then the minimum possible value of $n(B \cap C)$ is
a) 0
b) 1
c) 3
d) 2
7. The relation $R=\{(1,3),(3,5)\}$ is defined on the set with minimum number of elements of natural numbers. The minimum number of elements to be included in R so that R is an equivalence relation, is
a) 5
b) 6
c) 7
d) 8
8. If $A=\{1,2,3\}$, then the relation $R=\{(1,1),(2,2),(3,1),(1,3)\}$ is
a) Reflexive
b) Symmetric
c) Transitive
d) Equivalence
9. Let R be a relation on a set A such that $R=R^{-1}$, then R is
a) Reflexive
b) Symmetric
c) Transitive
d) None of these
10. InQ.No. $6, \cap_{n=3}^{10} A_{n}=$
a) $\{3,5,7,11,13,17,19\}$
b) $\{2,3,5\}$
c) $\{2,3,5,7,11,13,17\}$
d) $\{3,5,7\}$
11. The number of elements in the set $\left\{(a, b): 2 a^{2}+3 b^{2}=35, a, b \in Z\right\}$, where Z is the set of all integers, is
a) 2
b) 4
c) 8
d) 12
12. If $A=\{a, b, c\}, B=\{b, c, d\}$ and $C=\{a, d, c\}$, then $(A-B) \times(B \cap C)$ is equal to
a) $\{(a, c),(a, d)\}$
b) $\{(a, b),(c, d)\}$
c) $\{(c, a),(d, a)\}$
d) $\{(a, c),(a, d),(b, d)\}$
13. A class has 175 students. The following data shows the number of students opting one or more subjects. Mathematics 100; Physics 70; Chemistry 40; Mathematics and Physics 30; Mathematics and Chemistry 28; Physics and Chemistry 23; Mathematics, Physics and Chemistry 18. Hoe many students have offered Mathematics alone?
a) 35
b) 48
c) 60
d) 22
14. If $A=\{1,2,3\}, B\{3,4\}, C\{4,5,6\}$. Then, $A \cup(B \cap C)$ is
a) $\{1,2\}$
b) $\{\phi\}$
c) $\{4,5\}$
d) $\{1,2,3,4\}$
15. If $A \subseteq B$, then $B \cup A$ is equal to
a) $B \cap A$
b) A
c) B
d) None of these
16. If $n(u)=100, n(A)=50, n(B)=20$ and $n(A \cap B)=10$, then $n\left\{(A \cup B)^{c}\right\}$
a) 60
b) 30
c) 40
d) 20
17. If A is a non-empty set, then which of the following is false?
p : Every reflexive relation is a symmetric relation
q : Every antisymmetric relation is reflexive
Which of the following is/are true?
a) palone
b) q alone
c) Both p and q
d) Neither p nor q
18. Two points P and Q in a plane are related if $O P=O Q$, where O is a fixed point. This relation is
a) Partial order relation
b) Equivalence relation
c) Reflexive but not symmetric
d) Reflexive but not transitive
19. In a city 20% of the population travels by car, 50% travels by bus and 10% travels by both car and bus. Then, persons travelling by car or bus is
a) 80%
b) 40%
c) 60%
d) 70%
20. If $n(A \cap B=10, n(B \cap C)=20)$ and $n(A \cap C)=30$, then the greatest possible value of $n(A \cap B \cap C)$ is
a) 15
b) 20
c) 10
d) 4
