Class: XIth
Date :

Solutions

Topic :-SETS

101
(c)

We have,
$\{x \in Z:|x-3|<4\}=\{x \in Z:-1<x<7\}=\{0,1,2,3,4,5,6\}$
and,
$\{x \in Z:|x-4|<5\}=\{x \in Z:-1<x<9\}$
$=\{0,1,2,3,4,5,6,7,8\}$
$\therefore\{x \in Z:|x-3|<4\} \cap\{x \in Z:|x-4|<5\}$
$=\{0,1,2,3,4,5,6\}$
102
(a)

Since R is reflexive relation on A
$\therefore(a, a) \in R$ for all $a \in A$
\Rightarrow The minimum number of ordered pairs in R is n
Hence, $m \geq n$

104
 (c)

We have, $y=\frac{4}{x}$ and $x^{2}+y^{2}=8$
Solving these two equations, we have
$x^{2}+\frac{16}{x^{2}}=8 \Rightarrow\left(x^{2}-4\right)=0 \Rightarrow x= \pm 2$
Substituting $x= \pm 2$ in $y=\frac{4}{x^{\prime}}$, we get $y= \pm 2$
Thus, the two curves intersect at two points only (2,2) and ($-2,2$). Hence, $A \cap B$ contains just two points
105 (b)
Let $(a, b) \in R$. Then,
$|a+b|=a+b \Rightarrow|b+a|=b+a \Rightarrow(b, a) \in R$
$\Rightarrow R$ is symmetric
106
(c)

Minimum possible value of $n(B \cap C)$ is $n(A \cap B \cap C)=3$

107
 (a)

To make R a reflexive relation, we must have (1,1),(3,3) and (5,5) in it. In order to make R a symmetric relation, we must inside $(3,1)$ and $(5,3)$ in it.

Now, $(1,3) \in R$ and $(3,5) \in R$. So, to make R a transitive relation, we must have, $(1,5) \in R$. But, R must be symmetric also. So, it should also contain (5,1). Thus, we have
$R=\{(1,1),(3,3),(5,5),(1,3),(3,5),(3,1),(5,3),(1,5),(5,1)\}$
Clearly, it is an equivalence relation on $A\{1,3,5\}$
108 (b)
Clearly, $(3,3) \notin R$. So, R is not reflexive. Also, $(3,1)$ and $(1,3)$ are in R but $(3,3) \notin R$. So, R is not transitive
But, R is symmetric as $R=R^{-1}$
109
(b)

Let $(a, b) \in R$. Then,
$(a, b) \in R \Rightarrow(b, a) \in R^{-1} \quad\left[\right.$ By def. of $\left.R^{-1}\right]$
$\Rightarrow(b, a) \in R \quad\left[\because R=R^{-1}\right]$
So, R is symmetric
110
(b)

We have,
$A_{2} \subset A_{3} \subset A_{4} \subset \ldots \subset A_{10}$
$\therefore \bigcap_{n=3}^{10} A_{n}=A_{3}=\{2,3,5\}$
111
(c)

The possible sets are $\{ \pm 2, \pm 3\}$ and $\{ \pm 4, \pm 1\}$; therefore, number of elements in required set is 8 .

112 (a)

Given, $A=\{a, b, c\}, \quad B=\{b, c, d\}$ and $\quad C=\{a, d, c\}$
Now, $A-B=\{a, b, c\}-\{b, c, d\}=\{a\}$
And $B \cap C=\{b, c, d\} \cap\{a, d, c\}=\{c, d\}$
$\therefore(A-B) \times(B \cap C)=\{a\} \times\{c, d\}$

$$
=\{(a, c),(a, d)\}
$$

113 (c)
Given, $n(M)=100, n(P)=70, \quad n(C)=40$
$n(M \cap P)=30, \quad n(M \cap C)=28$,
$n(P \cap C)=23$ and $n(M \cap P \cap C)=18$
$\therefore n\left(M \cap P^{\prime} \cap C^{\prime}\right)=n\left[M \cap\left(P \cap C^{\prime}\right)\right]$
$=n(M)-n[M \cap(P \cap C)]$
$=n(M)-[n(M \cap P)+n(M \cap C)-n(M \cap P \cap C)]$
$=100-[30+28-18=60]$
114 (d)
$B \cap C=\{4\}$.
$\therefore A \cup(B \cap C)=\{1,2,3,4\}$
115 (c)
$\because \quad A \subseteq B$
$\therefore \quad B \cup A=B$
116 (c)
$n\left((A \cup B)^{c}\right\}=n(\mathcal{U})-n(A \cup B)$
$=n(\mathcal{U})-\{n(A)+n(B)-n(A \cap B)\}$
$=100-(50+20-10)=40$
117
(d)

If $A=\{1,2,3\}$, then $R=\{(1,1),(2,2),(3,3),(1,2)\}$ is reflexive on A but it is not symmetric So, a reflexive relation need not be symmetric
The relation 'is less than' on the set Z of integers is antisymmetric but it is not reflexive 119
(c)

Clearly,
Required percent $=20+50-10=60 \%$
$[\because n(A \cup B)=n(A)+n(B)-n(A \cap B)]$
120 (c)
The greatest possible value of $n(A \cap B \cap C)$ is the least amongst the values $n(A \cap B), n(B \cap C)$ and $n(A \cap C)$ i.e. 10

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | C | A | B | C | B | C | A | B | B | B |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | C | A | C | D | C | C | D | B | C | C |
| | | | | | | | | | | |

