

Class : XIth Date :

Solutions

Subject : MATHS DPP No. :6

Topic :-SETS

101 (c) We have, ${x \in Z: |x - 3| < 4} = {x \in Z: -1 < x < 7} = {0,1,2,3,4,5,6}$ and, ${x \in Z: |x - 4| < 5} = {x \in Z: -1 < x < 9}$ $= \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ $\therefore \{x \in Z : |x - 3| < 4\} \cap \{x \in Z : |x - 4| < 5\}$ $= \{0, 1, 2, 3, 4, 5, 6\}$ 102 (a) Since *R* is reflexive relation on *A* \therefore (*a*,*a*) \in *R* for all *a* \in *A* \Rightarrow The minimum number of ordered pairs in R is n Hence, $m \ge n$ 104 (c) We have, $y = \frac{4}{x}$ and $x^{2} + y^{2} = 8$ Solving these two equations, we have $x^{2} + \frac{16}{x^{2}} = 8 \Rightarrow (x^{2} - 4) = 0 \Rightarrow x = \pm 2$ Substituting $x = \pm 2$ in $y = \frac{4}{x}$, we get $y = \pm 2$ Thus, the two curves intersect at two points only (2, 2) and (-2, 2). Hence, $A \cap B$ contains just two points 105 (b) Let $(a,b) \in R$. Then, $|a + b| = a + b \Rightarrow |b + a| = b + a \Rightarrow (b,a) \in R$ $\Rightarrow R$ is symmetric 106 (c) Minimum possible value of $n(B \cap C)$ is $n(A \cap B \cap C) = 3$ 107 (a) To make R a reflexive relation, we must have (1,1),(3,3) and (5,5) in it. In order to make R a symmetric relation, we must inside (3,1) and (5,3) in it.

Now, $(1,3) \in R$ and $(3,5) \in R$. So, to make R a transitive relation, we must have, $(1,5) \in R$. But, R must be symmetric also. So, it should also contain (5,1). Thus, we have $R = \{(1,1), (3,3), (5,5), (1,3), (3,5), (3,1), (5,3), (1,5), (5,1)\}$ Clearly, it is an equivalence relation on A{1,3,5} 108 **(b)** Clearly, $(3,3) \notin R$. So, R is not reflexive. Also, (3,1) and (1,3) are in R but $(3,3) \notin R$. So, R is not transitive But, *R* is symmetric as $R = R^{-1}$ 109 (b) Let $(a,b) \in R$. Then, $(a,b) \in R \Rightarrow (b,a) \in R^{-1}$ [By def. of R^{-1}] $[::R = R^{-1}]$ \Rightarrow (b,a) $\in R$ So, *R* is symmetric 110 **(b)** We have, $A_2 \subset A_3 \subset A_4 \subset \ldots \subset A_{10}$ $A_n = A_3 = \{2,3,5\}$:. 111 (c) The possible sets are $\{\pm 2, \pm 3\}$ and $\{\pm 4, \pm 1\}$; therefore, number of elements in required set is 8. 112 (a) Given, $A = \{a, b, c\}, B = \{b, c, d\}$ and $C = \{a, d, c\}$ Now, $A - B = \{a, b, c\} - \{b, c, d\} = \{a\}$ And $B \cap C = \{b, c, d\} \cap \{a, d, c\} = \{c, d\}$ $\therefore (A - B) \times (B \cap C) = \{a\} \times \{c, d\}$ $= \{(a, c), (a, d)\}$ 113 (c) Given, n(M) = 100, n(P) = 70, n(C) = 40 $n(M \cap P) = 30, \quad n(M \cap C) = 28,$ $n(P \cap C) = 23$ and $n(M \cap P \cap C) = 18$ $\therefore n(M \cap P' \cap C') = n[M \cap (P \cap C')]$ $= n(M) - n[M \cap (P \cap C)]$ $= n(M) - [n(M \cap P) + n(M \cap C) - n(M \cap P \cap C)]$ = 100 - [30 + 28 - 18 = 60]114 (d) $B \cap C = \{4\}.$ $\therefore A \cup (B \cap C) = \{1, 2, 3, 4\}$ 115 (c) \vdots $A \subseteq B$ $B \cup A = B$ *.*:. 116 (c) $n((A \cup B)^{c}) = n(\mathcal{U}) - n(A \cup B)$

 $= n(\mathcal{U}) - \{n(A) + n(B) - n(A \cap B)\}$ = 100 - (50 + 20 - 10) = 40 117 (d) If $A = \{1,2,3\}$, then $R = \{(1,1),(2,2),(3,3),(1,2)\}$ is reflexive on A but it is not symmetric So, a reflexive relation need not be symmetric The relation 'is less than' on the set Z of integers is antisymmetric but it is not reflexive 119 (c) Clearly, Required percent = 20 + 50 - 10 = 60% [$\because n(A \cup B) = n(A) + n(B) - n(A \cap B)$]

120 **(c)**

The greatest possible value of $n(A \cap B \cap C)$ is the least amongst the values $n(A \cap B), n(B \cap C)$ and $n(A \cap C)$ i.e. 10

ANSWER-KEY												
Q.	1	2	3		4	5	6	,	7	8	9	10
A.	С	A	В		С	В	C		A	В	В	В
Q.	11	12	13		14	15	16		17	18	19	20
A.	C	A	C		D	C	C		D	В	C	C