Class: XIth
Date :

Solutions

Topic :-SETS

81
(c)

Let the total population of town be x.

$\therefore \quad \frac{25 x}{100}+\frac{15 x}{100}-1500+\frac{65 x}{100}=x$
$\Rightarrow \quad \frac{105 x}{100}-x=1500$
$\Rightarrow \quad \frac{5 x}{100}=1500$
$\Rightarrow \quad x=30000$
82 (d)
As A, B, C are pair wise disjoints. Therefore,
$A \cap B=\phi, B \cap C=\phi$ and $A \cap C=\phi$
$\Rightarrow A \cap B \cap C=\phi \Rightarrow(A \cup B \cup C) \cap(A \cap B \cap C)=\phi$
83
(b)

Clearly, $R=\{(1,3),(3,1),(2,2)\}$
We observe that R is symmetric only
84
(d)

Given figure clearly represents

$$
(A-B) \cup(B-A)
$$

85
(d)
R_{4} is not a relation from A to B, because $(7,9) \in R_{4}$ but $(7,9) \notin A \times B$
86 (c)
R is reflexive if it contains $(1,1),(2,2),(3,3)$
$\because(1,2) \in R,(2,3) \in R$
$\because R$ is symmetric, if $(2,1),(3,2) \in R$
Now, $R=\{(1,1),(2,2),(3,3),(2,1),(3,2),(2,3),(1,2)\}$
R will be transitive, if $(3,1),(1,3) \in R$

Thus, R becomes an equivalence relation by adding $(1,1)(2,2)(3,3),(2,1)(3,2),(1,3),(3,1)$. Hence, the total number of ordered pairs is 7
87
(c)

The set A is the set of all points on the hyperbola $x y=1$ having its two branches in the first and third quadrants, while the set B is the set of all points on $y=-x$ which lies in second and four quadrants. These two curves do not intersect.
Hence, $A \cap B=\phi$.
88
(b)

Since R is an equivalence relation on set A. Therefore $(a, a) \in R$ for all $a \in A$.
Hence, R has at least n ordered pairs
89
(d)

It is given $A_{1} \subset A_{2} \subset A_{3} \subset A_{4} \ldots \subset A_{50}$
$\therefore \bigcup_{i=11}^{50} A_{i}=A_{11}$
$\Rightarrow n\left(\bigcup_{i=11}^{50} A_{i}\right)=n\left(A_{11}\right)=11-1=10$
90
(d)

We have,
$b N=\{b x \mid x \in \mathrm{~N}\}=$ Set of positive integral multiples of b
$c N=\{c x \mid x \in N\}=$ Set of positive integral multiples of c
$\therefore c N=\{c x \mid x \in N\}=$ Set of positive integral multiples of b and c both
$\Rightarrow d=1$.c.m. of b and c
91
(d)

Clearly, R is an equivalence relation
92
(b)

Number of element is $S=10$
And $\quad A=\{(x, y) ; x, y \in S, x \neq y\}$
\therefore Number of element in $A=10 \times 9=90$
93
(c)

Clearly,
$R=\{($ BHEL,SAIL $),(\mathrm{SAIL}, \mathrm{BHEL}),(\mathrm{BHEL}, \mathrm{GAIL})$,
(GAIL,BHEL),(BHEL,IOCL),(IOCL,BHEL) \}
We observe that R is symmetric only
94
(a)

According to the given condition,

$$
2^{m}=112+2^{n}
$$

$\Rightarrow \quad 2^{m}-2^{n}=112$
$\Rightarrow \quad m=7, n=4$
96 (c)
We have,
$p=\frac{(n+2)\left(2 n^{5}+3 n^{4}+4 n^{3}+5 n^{2}+6\right)}{n^{2}+2 n}$
$\Rightarrow p=2 n^{4}+3 n^{3}+4 n^{2}+5 n+\frac{6}{n}$
Clearly, $p \in Z^{+}$iff $\mathrm{n}=1,2,3,6$. So, A has 4 elements
97
(b)

Clearly,
$x \in A-B \Rightarrow x \in A$ but $x \notin B$
$\Rightarrow x$ is a multiple of 3 but it is not a multiple of 5
$\Rightarrow x \in A \cap \bar{B}$
98
(b)

Total drinks=3(ie, milk, coffee, tea).

Total number of students who take any of the drink is 80 .
\therefore The number of students who did not take any of three drinks $=100-80=20$
100 (d)
$\begin{aligned} n(A \cup B) & =n(A)+n(B)-n(A \cap B) \\ & =12+9-4=17\end{aligned}$
Hence, $n\left[(A U B)^{c}\right]=n(U)-n(A \cup B)$

$$
=20-17=3
$$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | C | D | B | D | D | C | C | B | D | D |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | D | B | C | A | C | C | B | B | D | D |
| | | | | | | | | | | |

