

Class : XIth Date : Subject : MATHS DPP No. :4

Торіс :-ѕетѕ

1.	If $n(A_i) = i + 1$ and A_1	$\subset A_2 \subset A_3$	$\subset \subset A_{99}$. the	$en n(\bigcup_{i=1}^{99} A_i) =$					
	a) 99	b) 98	, , , , , , , , , , , , , , , , , , ,	c) 100		d)101			
2.	Two finite sets have <i>m</i>	and <i>n</i> eler	nents. The tot	al number of su	bsets of t	the first set is 56 more			
tha	$\frac{1}{2}$ has the total number of subsets of the second set. The values of <i>m</i> and <i>n</i> are								
	a) $m = 7.n = 6$	b) $m = 6$.	n = 3	c) $m = 5.n = 1$		d) $m = 8.n = 7$			
3.	Let A be the set of all a	nimals. A r	elation R is de	efined as " <i>aRb</i> if	ff a and b	are in different			
zoological parks". Then R is									
	a) Only reflexive	b) Only s	ymmetric	c) Only transit	ive	d)Equivalence			
4.	Let <i>X</i> and <i>Y</i> be the sets of all positive divisors of 400 and 1000 respectively (including 1 and the								
number). Then, $n(X \cap Y)$ is equal to									
	a) 4	b)6		c) 8		d)12			
5.	Let <i>R</i> be a relation from	n a s <mark>et A to</mark>	a set <i>B</i> , then						
	a) $R = A \cup B$	b) $R = A$	$\cap B$	c) $R \subseteq A \times B$		d) $R \subseteq B \times A$			
6.	If X and Y are two sets	, then $X \cap$	(Y ∪ X <mark>)' equ</mark> al	s					
	a) <i>X</i>	b) <i>Y</i>		c) φ		d)None of these			
7.	If $A = \{1, 2, 3, 4, 5, 6\}, t$	then <mark>how n</mark>	nany subsets o	of A contain the	element	s 2, 3 and 5?			
	a) 4	b)8		c) 16		d)32			
8.	For any three sets A_{1} , A_{2}	A ₂ ,A ₃ , let B ₂	$A_1 = A_1, B_2 = A_2$	$-A_1$ and $B_3 = -A_1$	$A_3 - (A_1$	$\cup A_2$), then which one of			
the following statement is always true									
	a) $A_1 \cup A_2 \cup A_3 \supset B_1 \cup B_2 \cup B_3$								
	b) $A_1 \cup A_2 \cup A_3 = B_1 \cup B_2 \cup B_3$								
	c) $A_1 \cup A_2 \cup A_3 \subset B_1 \cup B_2 \cup B_3$								
	d)None of these								
9.	If A is a non-empty set, then which of the following is false?								
<i>p</i> : There is at least one reflexive relation on <i>A</i>									
q:'	There is at least one syn	nmetric rel	ation on A						
	a) palone	b) <i>q</i> alon	e	c) Both <i>p</i> and <i>a</i>	9	d) Neither <i>p</i> nor <i>q</i>			
10.	In an election, two con	testants A	and <i>B</i> contest	ed $x\%$ of the tot	tal voters	s voted for A and			
(x + 20)% for <i>B</i> . If 20% of the voters did not vote, then $x =$									
	a) 30	b) 25		c) 40		d)35			
11. Let $A = \{1, 2, 3, 4\}$, and let $R = \{(2, 2), (3, 3), (4, 4), (1, 2)\}$ be a relation on A . Then, R is									
	a) Reflexive	b) Symm	etric	c) Transitive		d)None of these			
12. In a rehabilitation programme, a group of 50 families were assured new houses and									
con	compensation by the government. Number of families who got both is equal to the number of								

families who got neither of the two. The number of families who got new houses is 6 greater than									
the number of families who got compensation. How many families got houses?									
	a) 22	b) 28	c) 23	d) 25					
13.	3. Let \mathcal{U} be the universal set for sets A and B such that $n(A) = 200, n(B) = 300$ and $n(A \cap B)$								
= 1	= 100. Then, $n(A' \cap B')$ is equal to 300, provided that $n(U)$ is equal to								
	a) 600	b) 700	c) 800	d)900					
14.	14. An integer <i>m</i> is said to be related to another integer <i>n</i> if <i>m</i> is a multiple of <i>n</i> . Then, the relation								
is	is								
	a) Reflexive and symmetric								
	b) Reflexive and transitive								
	c) Symmetric and transitive								
	d)Equivalence relation								
15.	5. Three sets A, B, Care such that $A = B \cap C$ and $B = C \cap A$, then								
	a) $A \subset B$	b) $A \supset B$	c) $A \equiv B$	d) $A \subset B'$					
16. Let <i>R</i> be a relation on the set <i>N</i> of natural numbers defined by $nRm \Leftrightarrow n$ is a factor of m (i.e. $n \mid n$									
m)	m).Then, R is								
	a) Reflexive and symmetric								
	b) Transitive and symmetric								
	c) Equivalence								
	d) Reflexive, transitive but not symmetric								
17.	If $a N = \{a : x \in N\}$ and	$d b N \cap c N = d N, when$	re $b, c \in N$ are relatively	prime, then					
	a) $d = bc$	b) $c = bd$	c) $b = cd$	d) None of these					
18.	.8. In rule method the null set <mark>is rep</mark> resent <mark>ed by</mark>								
	a){}	b) Φ	c) $\{x : x \neq x\}$	d) { $x : x = x$ }					
19. Let <i>A</i> be a set represented by the squares of natural number and <i>x</i> , <i>y</i> are any two elements of <i>A</i> .									
The	en,								
	a) $x - y \in A$	b) $x y \in A$	c) $x + y \in A$	d) $\frac{x}{y} \in A$					
20.	20. Let $A_1, A_2, A_3, \dots, A_{100}$ be 100 sets such that $n(A_i) = i + 1$ and $A_1 \subset A_2 \subset A_3 \subset \dots \subset A_{100}$, then								
$\bigcup_{i=1}^{100} A_i$ contains elements									
	a) 99	b)100	c) 101	d)102					