

We have,

 $B_1 = A_1 \Rightarrow B_1 \subset A_1$ $B_2 = A_2 - A_1 \Rightarrow B_2 \subset A_2$ $B_3 = A_3 - (A_1 \cup A_2) \Rightarrow B_3 \subset A_3$ $\therefore B_1 \cup B_2 \cup B_3 \subset A_1 \cup A_2 \cup A_3$ 69

(d)

The identity relation on a set A is reflexive and symmetric both. So, there is always a reflexive and symmetric relation on a set

70 (a)

Let the total number of voters be *n*. Then, Number of voters voted for $A = \frac{nx}{100}$ Number of voters voted for $B = \frac{n(x+20)}{100}$: Number of voters who voted for both $=\frac{nx}{100}+\frac{n(x+20)}{100}$ $=\frac{n(2x+20)}{100}$ Hence, $n - \frac{n(2x+20)}{100} = \frac{20n}{100} \Rightarrow x = 30$ 71 (c) Since $(1,1) \notin R$. So, *R* is not reflexive Now, $(1,2) \in R$ but, $(2,1) \notin R$. Therefore, *R* is not symmetric. Clearly, *R* is transitive 72 (b) Let *A* and *B* denote respectively the sets of families who got new houses and compensation It is given that $n(A \cap B) = n(\overline{A \cup B})$ $\Rightarrow n(A \cap B) = 50 - n(A \cup B)$ $\Rightarrow n(A) + n(B) = 50$ $\Rightarrow n(B) + 6 + n(B) = 50 \quad [:: n(A) = n(B) + 6 \text{ (given)}]$ $\Rightarrow n(B) = 22 \Rightarrow n(A) = 28$ 73 (b) We have, $n(A' \cap B') = n((A \cup B)')$ $\Rightarrow n(A' \cap B') = n(\mathcal{U}) - n(A \cup B)$ $\Rightarrow n(A' \cap B') = n(\mathcal{U}) - \{n(A) + n(B) - n(A \cap B)\}$ $\Rightarrow 300 = n (\mathcal{U}) - \{200 + 300 - 100\}$ $\Rightarrow n(\mathcal{U}) = 700$ 74 **(b)** For any integer *n*, we have $n|n \Rightarrow n R n$ So, n R n for all $n \in Z$ $\Rightarrow R$ is reflexive Now, 2|6 but 6 does not divide 2

 \Rightarrow (2, 6) \in *R* but (6,2) \notin *R* So, *R* is not symmetric Let $(m,n) \in R$ and $(n,p) \in R$. Then, $\begin{array}{c} (m,n) \in R \Rightarrow m|n\\ (n,p) \in R \Rightarrow n|p \end{array} \Rightarrow m|p \Rightarrow (m,p) \in R \end{array}$ So, *R* is transitive Hence, *R* is reflexive and transitive but it is not symmetric 75 (c) Since, $A = B \cap C$ and $B = C \cap A$, Then $A \equiv B$ 76 (d) Since n|n for all $n \in N$. Therefore, *R* is reflexive. Since 2|6 but 6{2, therefore *R* is not symmetric Let n R m and m R p $\Rightarrow n R m$ and m R p \Rightarrow *n*|*m* and *m*|*p* \Rightarrow *n*|*p* \Rightarrow *n R p* So, *R* is transitive 77 (a) We have, $b N = \{b x \mid x \in N\}$ = Set of positive integral multiples of b $c N = \{c x \mid x \in N\}$ = Set positive integral multiples of c $\therefore bN \cap cN =$ Set of positive integral multiples of bc $\Rightarrow bN \cap cN = bc N$ [: *b* and *c* are prime] Hence, d = bc79 (b) Let $x, y \in A$. Then, $x = m^2, y = n^2$ for some $m, n \in N$ $\Rightarrow xy = (mn)^2 \in A$ 80 (c) We have, $A_1 \subset A_2 \subset A_3 \subset \ldots \subset A_{100}$ $\therefore \bigcup_{i=1}^{100} A_i = A_{100} \Rightarrow n\left(\bigcup_{i=1}^{100} A_i\right) = n(A_{100}) = 101$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	С	В	В	D	С	С	В	А	D	А	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	С	В	В	В	С	D	А	С	В	С	

