Class: XIth
Date :

Solutions

61 (c)
It is given that
$A_{1} \subset A_{2} \subset A_{3} \ldots \subset A_{99}$
$\bigcup_{i=1}^{999} A_{i}=A_{99}$
$\Rightarrow n\left(\bigcup_{i=1}^{99} A_{i}\right)=n\left(A_{99}\right)=99+1=100$
62
(b)

It is given that $2^{m}-2^{n}=56$
Obviously, $m=6, n=3$ satisfy the equation
63
(b)

Clearly, $(a, a) \in R$ for any $a \in A$
Also,
$(a, b) \in R$
$\Rightarrow a$ and b are in different zoological parks
$\Rightarrow b$ and a are in different zoological parks
$\Rightarrow(b, a) \in R$
Now, $(a, b) \in R$ and $(b, a) \in R$ but $(a, a) \notin R$
So, R is not transitive
64 (d)
$X \cap Y=\{1,2,4,5,8,10,20,25,40,50,100,200\}$
$\therefore \quad n(X \cap Y)=12$
66
(c)

We have,
$X \cap(Y \cup X)^{\prime}=X \cap\left(Y^{\prime} \cap X^{\prime}\right)=\left(X \cap X^{\prime}\right) \cap Y^{\prime}=\phi \cap Y^{\prime}=\phi$
67
(b)

The number of subsets of A containing 2,3 and 5 is same as the number of subsets of set $\{1,4,6\}$ which is equal to $2^{3}=8$
68
(a)

We have,
$B_{1}=A_{1} \Rightarrow B_{1} \subset A_{1}$
$B_{2}=A_{2}-A_{1} \Rightarrow B_{2} \subset A_{2}$
$B_{3}=A_{3}-\left(A_{1} \cup A_{2}\right) \Rightarrow B_{3} \subset A_{3}$
$\therefore B_{1} \cup B_{2} \cup B_{3} \subset A_{1} \cup A_{2} \cup A_{3}$
69
(d)

The identity relation on a set A is reflexive and symmetric both. So, there is always a reflexive and symmetric relation on a set
70
(a)

Let the total number of voters be n. Then,
Number of voters voted for $A=\frac{n x}{100}$
Number of voters voted for $B=\frac{n(x+20)}{100}$
\therefore Number of voters who voted for both
$=\frac{n x}{100}+\frac{n(x+20)}{100}$
$=\frac{n(2 x+20)}{100}$
Hence, $n-\frac{n(2 x+20)}{100}=\frac{20 n}{100} \Rightarrow x=30$
71 (c)
Since $(1,1) \notin R$. So, R is not reflexive
Now, $(1,2) \in R$ but, $(2,1) \notin R$. Therefore, R is not symmetric.
Clearly, R is transitive
72
(b)

Let A and B denote respectively the sets of families who got new houses and compensation
It is given that
$n(A \cap B)=n(\overline{A \cup B})$
$\Rightarrow n(A \cap B)=50-n(A \cup B)$
$\Rightarrow n(A)+n(B)=50$
$\Rightarrow n(B)+6+n(B)=50 \quad[\because n(A)=n(B)+6$ (given) $]$
$\Rightarrow n(B)=22 \Rightarrow n(A)=28$
73
(b)

We have,
$n\left(A^{\prime} \cap B^{\prime}\right)=n\left((A \cup B)^{\prime}\right)$
$\Rightarrow n\left(A^{\prime} \cap B^{\prime}\right)=n(\mathcal{U})-n(A \cup B)$
$\Rightarrow n\left(A^{\prime} \cap B^{\prime}\right)=n(\mathcal{U})-\{n(A)+n(B)-n(A \cap B)\}$
$\Rightarrow 300=n(U)-\{200+300-100\}$
$\Rightarrow n(\mathcal{U})=700$
74
(b)

For any integer n, we have
$n \mid n \Rightarrow n$ R n
So, $n R n$ for all $n \in Z$
$\Rightarrow R$ is reflexive
Now, $2 \mid 6$ but 6 does not divide 2
$\Rightarrow(2,6) \in R$ but $(6,2) \notin R$
So, R is not symmetric
Let $(m, n) \in R$ and $(n, p) \in R$. Then,
$\underset{(n, p)}{(m, n)} \underset{(n \Rightarrow m \mid p}{\in R \Rightarrow m \mid n}\} \Rightarrow m \mid p \Rightarrow(m, p) \in R$
So, R is transitive
Hence, R is reflexive and transitive but it is not symmetric
75 (c)
Since, $A=B \cap C$ and $B=C \cap A$,
Then $A \equiv B$
76 (d)
Since $n \mid n$ for all $n \in N$. Therefore, R is reflexive. Since $2 \mid 6$ but $6 \nmid 2$, therefore R is not symmetric Let $n R m$ and $m R p$
$\Rightarrow n R m$ and $m R p$
$\Rightarrow n \mid m$ and $m|p \Rightarrow n| p \Rightarrow n R p$
So, R is transitive
77
(a)

We have,
$b N=\{b x \mid x \in \mathrm{~N}\}=$ Set of positive integral multiples of b
$c N=\{c x \mid x \in N\}=$ Set positive integral multiples of c
$\therefore b N \cap c N=$ Set of positive integral multiples of $b c$
$\Rightarrow b N \cap c N=b c N \quad[\because b$ and c are prime $]$
Hence, $d=b c$
79
(b)

Let $x, y \in A$. Then,
$x=m^{2}, y=n^{2}$ for some $m, n \in N$
$\Rightarrow x y=(m n)^{2} \in A$
80
(c)

We have,
$A_{1} \subset A_{2} \subset A_{3} \subset \ldots \subset A_{100}$
$\therefore \bigcup_{i=1}^{100} A_{i}=A_{100} \Rightarrow n\left(\bigcup_{i=1}^{100} A_{i}\right)=n\left(A_{100}\right)=101$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	C	B	B	D	C	C	B	A	D	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	C	B	B	B	C	D	A	C	B	C

