Class: XIth
Subject : MATHS
Date :
DPP No. : 3

Topic :- SETS

1. If A and B are two given sets, then $A \cap(A \cap B)^{c}$ is equal to
a) A
b) B
c) Φ
d) $A \cap B^{c}$
2. If a set has 13 elements and R is a reflexive relation on A with n elements, then
a) $13 \leq n \leq 26$
b) $0 \leq n \leq 26$
c) $13 \leq n \leq 169$
d) $0 \leq n \leq 169$
3. Let X be the set of all engineering colleges in a state of Indian Republic and R be a relation on X defined as two colleges are related iff they are affiliated to the same university, then R is
a) Only reflexive
b) Only symmetric
c) Only transitive
d) Equivalence
4. In the above question, the number of families which buy none of A, B and C is
a) 4000
b) 3300
c) 4200
d) 5000
5. If A and B are two sets, then $A \cap(A \cup B)$ equals
a) A
b) B
c) ϕ
d) None of these
6. If $A=\{1,3,5,7,9,11,13,15,17\}, B=\{2,4 \ldots, 18\}$ and N is the universal set, then $A^{\prime} \cup\left((A \cup B) \cap B^{\prime}\right)$ is
a) A
b) N
c) B
d) none of these
7. If $A=\{\phi,\{\phi\}\}$, then the power set of A is
a) A
b) $\{\phi,\{\phi\}, A\}$
c) $\{\phi,\{\phi\},\{\{\phi\}\}, A\}$
d) None of these
8. Let $A=\left\{(x, y): y=e^{x}, x \in R\right\}$,
$B=\left\{(x, y): y=e^{-x}, x \in R\right\}$. Then,
a) $A \cap B=\phi$
b) $A \cap B \neq \phi$
c) $A \cup B=R^{2}$
d) None of these
9. Let L denote the set of all straight lines in a plane. Let a relation R be defined by $\alpha R \beta \Leftrightarrow \alpha \perp \beta, \alpha, \beta \in L$. Then R is
a) Reflexive
b) Symmetric
c) Transitive
d) None of these
10. If A, B and C are three sets such that $A \cap B=A \cap C$ and $A \cup B=A \cup C$, then
a) $A=C$
b) $B=C$
c) $A \cap B=\phi$
d) $A=B$
11. Let $S=\{1,2,3,4\}$. The total number of unordered pairs of disjoint subsets of S is equal to
a) 25
b) 34
c) 42
d) 41
12. If $A=\left\{(x, y): x^{2}+y^{2}=4 ; x, y \in R\right\}$ and
$B=\left\{(x, y): x^{2}+y^{2}=9 ; x, y \in R\right\}$, then
a) $A-B=\phi$
b) $B-A=B$
c) $A \cap B \neq \phi$
d) $A \cap B=A$
13. Let $n(\mathcal{U})=700, n(A)=200, n(B)=300$ and $n(A \cap B)=100$. Then, $n\left(A^{c} \cap B^{c}\right)=$
a) 400
b) 600
c) 300
d) 200
14. If $A=\left\{\theta: \cos \theta>-\frac{1}{2}, 0 \leq \theta \leq \pi\right\}$ and
$B=\left\{\theta: \sin \theta>\frac{1}{2}, \frac{\pi}{3} \leq \theta \leq \pi\right\}$, then
a) $A \cap B=\{\theta: \pi / 3 \leq \theta \leq 2 \pi / 3\}$
b) $A \cap B=\{\theta:-\pi / 3 \leq \theta \leq 2 \pi / 3\}$
c) $A \cup B=\{\theta:-5 \pi / 6 \leq \theta \leq 5 \pi / 6\}$
d) $A \cup B=\{\theta: 0 \leq \theta \leq \pi / 6\}$
15. In a set of ants in a locality, two ants are said to be related iff they walk on a same straight line, then the relation is
a) Reflexive and symmetric
b) Symmetric and transitive
c) Reflexive and transitive
d) Equivalence
16. If $A=\{1,2,3\}, B=\{a, b\}$, then $A \times B$ mapped A to B is
a) $\{(1, a),(2, b),(3, b)\}$
b) $\{(1, b),(2, a)\}$
c) $\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$
d) $\{(1, a),(2, a),(2, b),(3, b)\}$
17. If A_{n} is the set of first n prime numbers, then $\cup_{n=2}^{10} A_{n}=$
a) $\{2,3,5,7,11,13,17,19\}$ b) $\{2,3,5,7,11,13,17,19,23,29\}$
c) $\{3,5\}$ d)
18. If $A=\{4,6,10,12\}$ and R is a relation defined on A as "two elements are related iff they have exactly one common factor other than 1 ". Then the relation R is
a) Antisymmetric
b) Only transitive
c) Only symmetric
d) Equivalence
19. If R is a relation from a set A to a set B and S is a relation from B to a set C, then the relation SoR
a) Is from A to C
b) Is from C to A
c) Does not exist
d) None of these
20. Let n be a fixed positive integer. Define a relation R on the set Z of integers by, $a R b \Leftrightarrow n \mid a-b$. Then, R is not
a) Reflexive
b) Symmetric
c) Transitive
d) None of these
