

Class : XIth Date : Subject : MATHS DPP No. : 3

Topic :- sets

1. If A and B are two given sets, then $A \cap (A \cap B)^c$ is equal to a) A b)*B* c) Φ d) $A \cap B^c$ 2. If a set has 13 elements and *R* is a reflexive relation on *A* with *n* elements, then a) $13 \le n \le 26$ b) $0 \le n \le 26$ c) 13 ≤ *n* ≤ 169 d) $0 \le n \le 169$ Let X be the set of all engineering colleges in a state of Indian Republic and R be a relation on X 3. defined as two colleges are related iff they are affiliated to the same university, then R is a) Only reflexive b) Only symmetric c) Only transitive d) Equivalence 4. In the above question, the number of families which buy none of *A*,*B* and *C* is a) 4000 b)3300 c) 4200 d)5000 5. If *A* and *B* are two sets, then $A \cap (A \cup B)$ equals b)*B* a) A c) Φ d)None of these If $A = \{1, 3, 5, 7, 9, 11, 13, 15, 17\}, B = \{2, 4, ..., 18\}$ and N is the universal set, then $A' \cup ((A \cup B) \cap B')$ 6. is b) Nc) B d) none of these a) A 7. If $A = \{\phi, \{\phi\}\}$, then the power set of *A* is a) A b) { ϕ , { ϕ }, A} c) $\{\phi, \{\phi\}, \{\{\phi\}\}, A\}$ d) None of these 8. Let $A = \{(x, y) : y = e^x, x \in R\},\$ $B = \{(x,y): y = e^{-x}, x \in R\}$. Then, c) $A \cup B = R^2$ a) $A \cap B = \Phi$ b) $A \cap B \neq \phi$ d) None of these 9. Let *L* denote the set of all straight lines in a plane. Let a relation *R* be defined by $\alpha R \beta \Leftrightarrow \alpha \perp \beta, \alpha, \beta \in L$. Then *R* is a) Reflexive b) Symmetric c) Transitive d) None of these 10. If *A*, *B* and *C* are three sets such that $A \cap B = A \cap C$ and $A \cup B = A \cup C$, then a) A = Cb) B = Cc) $A \cap B = \Phi$ d)A = B11. Let $S = \{1, 2, 3, 4\}$. The total number of unordered pairs of disjoint subsets of S is equal to a) 25 b)34 c) 42 d)41 If $A = \{(x,y): x^2 + y^2 = 4; x, y \in R\}$ and 12. $B = \{(x,y): x^2 + y^2 = 9; x, y \in R\}, \text{ then }$ b) B - A = Ba) $A - B = \phi$ c) $A \cap B \neq \phi$ d) $A \cap B = A$ 13. Let $n(\mathcal{U}) = 700$, n(A) = 200, n(B) = 300 and $n(A \cap B) = 100$. Then, $n(A^c \cap B^c) = 100$. a) 400 b)600 c) 300 d)200 If $A = \{\theta : \cos \theta > -\frac{1}{2}, 0 \le \theta \le \pi\}$ and 14. $B = \left\{ \theta : \sin \theta > \frac{1}{2}, \frac{\pi}{3} \le \theta \le \pi \right\}$, then a) $A \cap B = \{\theta : \pi/3 \le \theta \le 2\pi/3\}$ b) $A \cap B = \{\theta : -\pi/3 \le \theta \le 2\pi/3\}$

c) $A \cup B = \{\theta: -5\pi/6 \le \theta \le 5\pi/6\}$

d) $A \cup B = \{\theta : 0 \le \theta \le \pi/6\}$

15. In a set of ants in a locality, two ants are said to be related iff they walk on a same straight line, then the relation is

a) Reflexive and symmetric

b) Symmetric and transitive

c) Reflexive and transitive

d) Equivalence

16. If $A = \{1, 2, 3\}$, $B = \{a, b\}$, then $A \times B$ mapped A to B is

- a) {(1, a), (2, b), (3, b)} b) {(1, b), (2, a)}
- c) $\{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$ d) $\{(1, a), (2, a), (2, b), (3, b)\}$
- 17. If A_n is the set of first *n* prime numbers, then $\bigcup_{n=2}^{10} A_n =$
 - a) {2,3,5,7,11,13,17,19} b) {2,3,5,7,11,13,17,19,23,29} c) {3,5} d) {2,3}

18. If $A = \{4, 6, 10, 12\}$ and R is a relation defined on A as "two elements are related iff they have exactly one common factor other than 1". Then the relation R is

a) Antisymmetric b) Only transitive c) Only symmetric d) Equivalence

19. If *R* is a relation from a set *A* to a set *B* and *S* is a relation from *B* to a set *C*, then the relation

SoR

a) Is from *A* to *C* b) Is from *C* to *A* c) Does not exist d) None of these 20. Let *n* be a fixed positive integer. Define a relation *R* on the set *Z* of integers by, $a R b \Leftrightarrow n | a - b$. Then, *R* is not

a) Reflexive b) Symmetric c) Transitive d) None of these