Class: XIth
Date :

Solutions

Topic :-SETS

41
(d)

We have,
$A \cap(A \cap B)^{c}=A \cap\left(A^{c} \cup B^{c}\right)$
$\Rightarrow A \cap(A \cap B)^{c}=\left(A \cap A^{c}\right) \cup\left(A \cap B^{c}\right)$
$\Rightarrow A \cap(A \cap B)^{c}=\phi \cup\left(A \cap B^{c}\right)=A \cap B^{c}$
42
(c)

Since R is a reflexive relation on A.
$\therefore(a, a) \in R$ for all $a \in A$
$\Rightarrow n(A) \leq n(R) \leq n(A \times A) \Rightarrow 13 \leq n(R) \leq 169$
43
(d)

Clearly, R is reflexive symmetric and transitive. So, it is an equivalence relation
44
(a)

We have,
Required number of families
$=n\left(A^{\prime} \cap B^{\prime} \cap C^{\prime}\right)$
$=n(A \cup B \cup C)^{\prime}$
$=N-n(A \cup B \cup C)$
$=10000-\{n(A)+n(B)+n(C)-n(A \cap B)\}$
$-n(B \cap C)-n(A \cap C)+n(A \cap B \cap C)\}$
$=10000-4000-2000-1000+500+300+400-200$
$=4000$
45
(a)

We have,
$A \subset A \cup B$
$\Rightarrow A \cap(A \cup B)=A$
46
(b)

We have,
$(A \cup B) \cap B^{\prime}=A$
$\therefore\left((A \cup B) \cap B^{\prime}\right) \cup A^{\prime}=A \cup A^{\prime}=N$
48 (b)
The set A consists of all points on $y=e^{x}$ and the set B consists of points on $y=e^{-x}$, these two curves intersect at (0,1). Hence, $A \cap B$ consists of a single point
50
(b)

Given, $A \cap B=A \cap C$ and $A \cup B=A \cup C$
$\Rightarrow \quad B=C$
51 (d)
Required number

$$
=\frac{3^{4}+1}{2}=41
$$

52

(b)

Clearly, A is the set of all points on a circle with centre at the origin and radius 2 and B is the set of all points on a circle with centre at the origin and radius 3 . The two circles do not intersect.
Therefore,
$A \cap B=\phi \Rightarrow B-A=B$
53
(c)

We have,
$n\left(A^{c} \cap B^{c}\right)$
$=n\left\{(A \cup B)^{c}\right\}$
$=n(\mathcal{U})-n(A \cup B)$
$=n(\mathcal{U})-\{n(A)+n(B)-n(A \cap B)\}$
$=700-(200+300-100)=300$
54
(a)

We have,
$\cos \theta>-\frac{1}{2}$ and $0 \leq \theta \leq \pi$
$\Rightarrow 0 \leq \theta \leq 2 \pi / 3$ and $0 \leq \theta \leq \pi$
$\Rightarrow 0 \leq \theta \leq \frac{2 \pi}{3} \Rightarrow A=\{\theta: 0 \leq \theta \leq 2 \pi / 3\}$
Also,
$\sin \theta>\frac{1}{2}$ and $\pi / 3 \leq \theta \leq \pi$
$\Rightarrow \frac{\pi}{3} \leq \theta \leq \frac{5 \pi}{6} \Rightarrow B=\left\{\theta: \frac{\pi}{3} \leq \theta \leq \frac{5 \pi}{6}\right\}$
$\therefore A \cap B=\left\{\theta: \frac{\pi}{3} \leq \theta \leq \frac{2 \pi}{3}\right\}$ and $A \cup B=\left\{\theta: 0 \leq \theta \leq \frac{5 \pi}{6}\right\}$

55 (d)

Clearly, R is an equivalence relation
56 (c)
Given, $A=\{1,2,3\}, B=\{a, b\}$
$\therefore \quad A \times B=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$

57 (b)

Clearly,
$A_{2} \subset A_{3} \subset A_{4} \subset \ldots \subset A_{10}$
$\therefore \bigcup_{n=2}^{10} A_{n}=A_{10}=\{2,3,5,7,11,13,17,19,23,29\}$
58
(c)

Clearly,
$R=\{(4,6),(4,10),(6,4),(10,4)(6,10),(10,6),(10,12),(12,10)\}$
Clearly, R is symmetric
$(6,10) \in R$ and $(10,12) \in R$ but $(6,12) \notin R$
So, R is not transitive
Also, R is not reflexive

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	D	C	D	A	A	B	C	B	B	B
Q.	11	12	13	14	15	16	17	18	19	20
A.	D	B	C	A	D	C	B	C	A	D

