Class: XIth
Date :

Solutions

Topic :-SETS

1
(b)

For any $a \in R$, we have $a \geq a$
Therefore, the relation R is reflexive.
R is not symmetric as $(2,1) \in R$ but $(1,2) \notin R$. The relation R is transitive also, because (a, b)
$\in R,(b, c) \in R$ imply that $a \geq b$ and $b \geq c$ which in turn imply that $a \geq c$
2
(d)

Clearly, R is an equivalence relation
3
(c)

Let M and E denote the sets of students who have taken Mathematics and Economics respectively.
Then, we have
$n(M \cup E)=35, n(M)=17$ and $n\left(M \cap E^{\prime}\right)=10$
Now,
$n\left(M \cap E^{\prime}\right)=n(M)-n(M \cap E)$
$\Rightarrow 10=17-n(M \cap E) \Rightarrow n(M \cap E)=7$
Now,
$n(M \cup E)=n(M)+n(E)-n(M \cap E)$
$\Rightarrow 35=17+n(E)-7 \Rightarrow n(E)=25$
$\therefore n\left(E \cap M^{\prime}\right)=n(E)-n(E \cap M)=25-7=18$
4 (a)
Let $A=\{n(n+1)(2 n+1): n \in Z\}$
Putting $n= \pm 1, \pm 2, \ldots$. , we get $A=\{\ldots-30,-6,0,6,30, \ldots\}$
$\Rightarrow \quad\{n(n+1)(2 n+1): n \in Z\} \subset\{6 k: k \in Z\}$
5 (a)
$\because A \cup B=\{1,2,3,4,5,6\}$
$\therefore(A \cup B) \cap C=\{1,2,3,4,5,6\} \cap\{3,4,6\}$
$=\{3,4,6\}$
6
(d)

We have,
$n(A \cap \bar{B})=9, n(\bar{A} \cap B)=10$ and $n(A \cup B)=24$
$\Rightarrow n(A)-n(A \cap B)=9, n(B)-n(A \cap B)=10$ and, $n(A)+n(B)-n(A \cap B)=24$
$\Rightarrow n(A)+n(B)-2 n(A \cap B)=19$ and $n(A)+n(B)-n(A \cap B)=24$
$\Rightarrow n(A \cap B)=5$
$\therefore n(A)=14$ and $n(B)=15$
Hence, $n(A \times B)=14 \times 15=210$
7

(a)

Clearly, $P \subset T$
$\therefore P \cap T=P$
8 (a)
It is given that A is a proper subset of B
$\therefore A-B=\phi \Rightarrow n(A-B)=0$
We have, $n(A)=5$. So, minimum number of elements in B is 6
Hence, the minimum possible value of $n(A \Delta B)$ is $n(B)-n(A)=6-5=1$
9 (d)
$\because \quad n(A \times B \times C)=n(A) \times n(B) \times n(C)$
$\therefore \quad n(C)=\frac{24}{4 \times 3}=2$
10 (b)
Use $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
11 (d)
$\because A=\left\{(a, b): a^{2}+3 b^{2}=28, a, b \in Z\right\}$
$=\{(5,1),(-5,-1),(5,-1),(-5,1),(1,3),(-1,-3),(-1,3)$,
$(1,-3),(4,2),(-4,-2),(4,-2),(-4,2)\}$
And $B=\{(a, b): a>b, a, b \in Z\}$
$\therefore \quad A \cap B=\{(-1,-5),(1,-5),(-1,-3),(1,-3),(4,2),(4,-2)\}$
\therefore Number of elements in $A \cap B$ is 6 .
13 (d)
We have
$R=\{(1,39),(2,37),(3,35),(4,33),(5,31),(6,29)$,
(7,27),(8,25),(9,23),(10,21),(11,19),(12,17),
$(13,15),(14,13),(15,11),(16,9),(17,7),(18,5)$,
(19,3),(20,1)\}
Since $(1,39) \in R$, but $(39,1) \notin R$
Therefore, R is not symmetric
Clearly, R is not reflexive. Now, $(15,11) \in R$ and $(11,19) \in R$ but $(15,19) \notin R$
So, R is not transitive
14
(c)

Total number of employees $=7 x$ i.e. a multiple of 7 . Hence, option (c) is correct

15
(a)

The power set of a set containing n elements has 2^{n} elements.
Clearly, 2^{n} cannot be equal to 26
16
(b)

The relation is not symmetric, because $A \subset B$ does not imply that $B \subset A$. But, it is anti-symmetric because
$A \subset B$ and $B \subset A \Rightarrow A=B$
18
(c)

We have, $A \supset B \supset C$
$\therefore A \cup B \cup C=A$ and $A \cap B \cap C=C$
$\Rightarrow(A \cup B \cup C)-(A \cap B \cap C)=A-C$
19
(c)

Given, $n(C)=63, n(A)=76$ and $n(C \cap A)=x$
We know that,
$n(C \cup A)=n(C)+n(A)-n(C \cap A)$
$\Rightarrow \quad 100=63+76-x \Rightarrow x=139-100=39$
And $n(C \cap A) \leq n(C)$
$\Rightarrow \quad x \leq 63 \quad \therefore 39 \leq x \leq 63$
20
(b)

We have,
$X=$ Set of some multiple of 9
and, $Y=$ Set of all multiple of 9
$\therefore X \subset Y \Rightarrow X \cup Y=Y$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | B | D | C | A | A | D | A | A | D | B |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | D | D | D | C | A | B | D | C | C | B |
| | | | | | | | | | | |

