

CLASS : XIth DATE : **SUBJECT : MATHS DPP NO. :4**

Topic :-sequences and series

1. If H_1, H_2 are two harmonic means between two positive numbers *a* and *b* ($a \neq b$), *A* and *G* are the arithmetic and geometric means between *a* and *b*, then $\frac{H_2 + H_1}{H_2 H_1}$ is

a)
$$\frac{A}{G}$$
 b) $\frac{2A}{G}$ c) $\frac{A}{2G^2}$ d) $\frac{2A}{G^2}$

2. If the sum of *n* terms of the series $704 + \frac{1}{2}(704) + \frac{1}{4}(704) + \dots$ and $1984 - \frac{1}{2}(1984) + \frac{1}{4}(1984)\dots$ are equal, then *n* =

- a) 5 b) 3 c) 4 d) 10
- 3. The sum of series $1 + \frac{3}{2} + \frac{7}{4} + \frac{15}{8} + \frac{31}{16} + \dots$ is equal to a) $2(n-1) + \frac{1}{2^{n-1}}$ b) $2n - \frac{1}{2^n}$ c) $2 + \frac{1}{2^n}$ d) $2n - 1 + \frac{1}{2^n}$
- 4. If x,y,z are in HP, then $\log(x + z) + \log(x 2y + z)$ is equal to a) $\log(x - z)$ b) $2\log(x - z)$ c) $3\log(x - z)$ d) $4\log(x - z)$

5. In a geometric progression (GP) the ratio of the sum of the first three terms and first six terms is 125:152 the common ratio is

a) $\frac{1}{5}$ b) $\frac{2}{5}$ c) $\frac{4}{5}$ d) $\frac{3}{5}$

6. The sum of *n* terms of the following series $1 + (1 + x) + (1 + x + x^2) + \dots$ is a) $\frac{1-x^n}{1-x}$ b) $\frac{x(1-x^n)}{1-x}$ c) $\frac{n(1-x)-x(1-x^n)}{(1-x)^2}$ d) None of these

7. If *a*, *b*, *c* are in GP and $\log a - \log 2b$, $\log 2b$, $\log 2b - \log 3c$ and $\log 3c - \log a$ are in AP, then *a*, *b*, *c* are the length of the sides of a triangle which is

a) Acute angled b) Obtuse angled c) Right angled d) Equilateral

- 8. The sum of the series $\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} + \dots$ to *n* terms is a) $n - \frac{1}{2}(3^{-n} - 1)$ b) $n - \frac{1}{2}(1 - 3^{-n})$ c) $n + \frac{1}{2}(3^n - 1)$ d) $n - \frac{1}{2}(3^n - 1)$
- 9. $\sum_{n=0}^{\infty} \frac{(\log_e x)^n}{n!}$ is equal to

	a) $\log_e x$	b) <i>x</i>	c) $\log_x e$	d)None of these			
10.	If <i>S</i> is the sum of an in	nfinite GP, the first ter	m <i>a</i> , then the common	ratio r is given by			
	a) $\frac{a-S}{S}$	b) $\frac{S-a}{S}$	c) $\frac{a}{1-S}$	d) $\frac{S-a}{a}$			
11.	The sum of the series Σ	$\sum_{n=1}^{\infty} \frac{2n}{(2n+1)!}$, is					
	a) e	b) <i>e</i> ⁻¹	c) 2 <i>e</i>	d) $2e^{-1}$			
12.	The sum of the series $1 + 3x + 6x^2 + 10x^3 + \infty$ will be						
	a) $\frac{1}{(1-x)^2}$	b) $\frac{1}{1-x}$	c) $\frac{1}{(1+x)^2}$	d) $\frac{1}{(1-x)^3}$			
13.	$\frac{1}{n!} + \frac{1}{2!(n-2)!} + \frac{1}{4!(n-2)!}$	<u>4)!</u> +∞is					
	a) $\frac{2^{n-1}}{n!}$	b) $\frac{2^n}{(n+1)!}$	c) $\frac{2^{n}}{n!}$	$d)\frac{2^{n-2}}{(n-1)!}$			
14.	The sum of 11 terms of	an A.P. whose middle to	erm is 30, is				
	a) 320	b)330	c) 340	d)350			
15.	If $(2.3)^x = (0.23)^y = 10^{-10}$	000, then $\frac{1}{x} - \frac{1}{y}$ equals to					
	a) $\frac{1}{5}$	b) $\frac{1}{4}$	c) $\frac{1}{3}$	d) $\frac{1}{2}$			
16.	In a G.P. if the $(m + n)^{\text{th}}$ term is p and $(m - n)^{\text{th}}$ term is q, then its m^{th} term is						
	a) 0	b) <i>pq</i>	c) \sqrt{pq}	$d)\frac{1}{2}(p+q)$			
17.	$\mathrm{If}\log_6(x+3) - \log_6 x =$	= 2, then $x =$					
	a) $\frac{1}{35}$	b) $\frac{3}{35}$	c) $\frac{2}{35}$	d) $-\frac{3}{35}$			
18.	Sum of <i>n</i> terms of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} +$ is						
	a) 2^{-n}	b) $2^{-n}(n-1)$	c) $2^n(n-1) + 1$	d) $2^{-n} + n - 1$			
19.	7th term of an AP is 4	th term of an AP is 40. Then, the sum of first 13 terms is					
	a) 520	b)53	c) 2080	d)1040			
20. of tl	20. The sum of <i>n</i> terms of two arithmetic progressions are in the ratio $2n + 3:6n + 5$, then the ratio of their 13th terms is						

2	52.155	h) 27.07	0, 20, 02	d) 21.00
a	1 2 2 : 1 2 2	UJZ/:0/	0 29:05	ujsi:09