

CLASS: XIth DATE:

**SUBJECT: MATHS DPP NO.:7** 

1. The value of  $n \in \mathbb{Z}$  (the set of integers) for which the function  $f(x) = \sin \frac{\sin n x}{\sin (\frac{x}{2})}$  has  $4\pi$  as its period is

a) 2

b)3

c) 5

d)4

The inverse of the function  $f:R\to R$  given by  $f(x)=\log_a(x+\sqrt{x^2+1})(a>0, a\neq 1)$ , is

- a)  $\frac{1}{2}(a^x + a^{-x})$  b)  $\frac{1}{2}(a^x a^{-x})$  c)  $\frac{1}{2}(\frac{a^x + a^{-x}}{a^x a^{-x}})$
- d) Not defined

The domain of definition of the function

 $f(x) = x \cdot \frac{1 + 2(x+4)^{-0.5}}{2 - (x+4)^{0.5}} + (x+4)^{0.5} + 4(x+4)^{0.5}$ is

- b) (-4, 4)

 $d)(-4,0) \cup (0,\infty)$ 

4. If  $f(x) = \frac{\alpha x}{x+1}$ ,  $x \neq -1$ , for what value of  $\alpha$  is f[f(x)] = x?

a)  $\sqrt{2}$ b)  $-\sqrt{2}$ c) 1

d)-1

5. The period of the function  $f(x) = \csc^2 3x + \cot 4x$  is

a)  $\frac{\pi}{2}$ 

b)  $\frac{\pi}{4}$ 

 $d)\pi$ 

6. The domain of the definition of the function  $f(x) = \sqrt{1 + \log_e(1 - x)}$  is

- a)  $-\infty < x \le 0$
- b)  $-\infty < x \le \frac{e-1}{e}$  c)  $-\infty < x \le 1$
- d)  $x \ge 1 e$

7. The range of the function  $\sin(\sin^{-1}x + \cos^{-1}x)$ ,  $|x| \le 1$  is

- a) [-1, 1]
- b)[1,-1]
- $c) \{0\}$
- $d){1}$

The range of  $f(x) = \cos x - \sin x$  is

- a) [-1, 1]
- b)(-1,2)
- c)  $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- d)  $[-\sqrt{2}, \sqrt{2}]$

The range of function  $f(x) = x^2 + \frac{1}{x^2 + 1}$ 

- a)  $[1, \infty)$
- b)  $[2, \infty)$
- $\left[\frac{3}{2}, \infty\right)$
- d) None of these

- 10. If *n* is an integer, the domain of the function  $\sqrt{\sin 2x}$  is
  - a)  $\left[n\pi \frac{\pi}{2}, n\pi\right]$
- b)  $\left[n\pi, n\pi + \frac{\pi}{4}\right]$
- c)  $[(2n-1)\pi, 2n\pi]$  d)  $[2n\pi, (2n+1)\pi]$
- 11. If  $f:R\to R$  is defined by  $f(x)=x-[x]-\frac{1}{2}$  for all  $x\in R$ , where [x] denotes the greatest integer function, then  $\{x \in R : f(x) = \frac{1}{2}\}$  is equal to
  - a) *Z*

c) ф

d)R

- Suppose  $f:[-2,2] \rightarrow R$  is defined by
- $f(x) = \begin{cases} -1, & \text{for } -2 \le x \le 0 \\ x 1 & \text{for } 0 \le x \le 2 \end{cases}, \text{ then } \{x \in [-2, 2] : x \le 0 \text{ and } f(|x|) = x\} \text{ is equal to}$ 
  - a)  $\{-1\}$
- $b){0}$

- c)  $\{-\frac{1}{2}\}$
- d)  $\phi$
- 13. If  $f:R\to R$  is defined by  $f(x)=\sin x$  and  $g:(1,\infty)\to R$  is defined by  $g(x)=\sqrt{x^2-1}$ , then  $g\circ f(x)$  is a)  $\sqrt{\sin(x^2-1)}$  b)  $\sin\sqrt{x^2-1}$ c)  $\cos x$ d) Not defined
- 14. Let R and C denote the set of real numbers and complex numbers respectively. The function  $f:C \rightarrow R$  defined by f(z) = |z| is
  - a) One to one

b) Onto

c) Bijective

- d) Neither one to one nor onto
- 15. If  $f(x) = \frac{x-1}{x+1}$ , then f(2 x) is  $a) \frac{f(x)+1}{f(x)+3}$   $b) \frac{3f(x)+1}{f(x)+3}$
- c)  $\frac{f(x)+3}{f(x)+1}$
- d)  $\frac{f(x)+3}{3f(x)+1}$

- 16. The range of the function  $f(x) = \tan \sqrt{\frac{\pi^2}{9} x^2}$  is
  - a) [0, 3]
- b)  $[0, \sqrt{3}]$
- c)  $(-\infty, \infty)$
- d) None of these
- 17. The domain of the function  $f(x) = \csc^{-1}[\sin x]$  in  $[0, 2\pi]$ , where  $[\cdot]$  denotes the greatest integer function, is
  - a)  $[0, \pi/2) \cup (\pi, 3\pi/2]$  b)  $(\pi, 2\pi) \cup \{\pi/2\}$  c)  $(0, \pi] \cup \{3\pi/2\}$

- d)  $(\pi/2,\pi) \cup (3\pi/2,2\pi)$
- 18. Let R be the relation on the set R of all real numbers defined by  $aRbif |a-b| \le 1$ , then R is
  - a) Reflexive and symmetric

b) Symmetric only

c) Transitive only

- d) Anti-symmetric only
- 19. The domain of the function  $f(x) = \log_e(x [x])$  is
  - a) R

- b) R Z
- c)  $(0, +\infty)$
- d)Z

- 20. If  $f:[0,\infty] \rightarrow [0,\infty]$  and  $f(x) = \frac{x}{1+x}$ , then f is
  - a) One-one and onto

b) One-one but not onto

c) Onto but not one-one

d) Neither one-one nor onto