

CLASS: XIth DATE:

SUBJECT: MATHS

DPP NO.:6

1. If
$$2f(x^2) + 3f(\frac{1}{x^2}) = x^2 - 1$$
 for all $x \in R - \{0\}$, then $f(x^4)$ is

a)
$$\frac{(1-x^4)(2x^4+3)}{5x^4}$$

b)
$$\frac{(1+x^4)(2x^4-3)}{5x^4}$$

a)
$$\frac{(1-x^4)(2x^4+3)}{5x^4}$$
 b) $\frac{(1+x^4)(2x^4-3)}{5x^4}$ c) $\frac{(1-x^4)(2x^4-3)}{5x^4}$

d) None of these

2. The domain of definition of the function
$$f(x) = {}^{7-x}P_{x-3}$$
, is

d) None of these

3. Let
$$f(x) = x$$
 and $g(x) = |x|$ for all $x \in R$. Then, the function $\phi(x)$ satisfying $\{\phi(x) - f(x)\}^2 + \{\phi(x) - g(x)\}^2 = 0$, is

a)
$$\phi(x) = x, x \in [0, \infty)$$

b)
$$\phi(x) = x, x \in R$$

c)
$$\phi(x) = -x, x \in (-\infty, 0]$$

d)
$$\phi(x) = x + |x|, x \in R$$

4. The value of the function
$$f(x) = 3\sin\left(\sqrt{\frac{\pi^2}{16} - x^2}\right)$$
 lies in the interval

a)
$$[-\pi/4,\pi/4]$$

b)
$$[0, 3/\sqrt{2}]$$

c)
$$(-3,3)$$

d) None of these

5. The period of the function
$$f(x) = |\sin x| + |\cos x|$$
 is

b)
$$\pi/2$$

d) None of these

6. If
$$f(x) = (ax^2 + b)^3$$
, then the function g such that $f(g(x)) = g(f(x))$ is given by

a)
$$g(x) = \left(\frac{b - x^{1/3}}{a}\right)^{1/3}$$

b)
$$g(x) = \frac{1}{(ax^2 + b)^3}$$

a)
$$g(x) = \left(\frac{b - x^{1/3}}{a}\right)^{1/2}$$
 b) $g(x) = \frac{1}{(ax^2 + b)^3}$ c) $g(x) = \left(ax^2 + b\right)^{1/3}$ d) $g(x) = \left(\frac{x^{1/3} - b}{a}\right)^{1/2}$

d)
$$g(x) = \left(\frac{x^{1/3} - b}{a}\right)^{1/2}$$

Let R be the real line. Consider the following subsets of the plane $R \times R$

$$S = \{(x, y) : y = x + 1 \text{ and } o < x < 2\}$$

$$T = \{(x, y): x - y \text{ is an integer}\}$$

Which of the following is true?

c) Both
$$S$$
 and T are equivalence relations on R d) S is an equivalence relations on R and T is not

8. Let
$$A = [-1, 1]$$
 and $f:A \rightarrow A$ be defined as $f(x) = x|x|$ for all $x \in A$, then $f(x)$ is

- 9. If $f(x) = \frac{1-x}{1+x}$, $x \neq 0$, -1 and $\alpha = f(f(x)) + f\left(f\left(\frac{1}{x}\right)\right)$, then
 - a) $\alpha > 2$
- b) $\alpha < -2$
- c) $|\alpha| > 2$
- d) $\alpha = 2$
- 10. Let *R* and *S* be two non-void relations on a set *A*. Which of the following statements is false?
 - a) R and S are transitive implies $R \cap S$ is transitive.
 - b) R and S are transitive implies $R \cup S$ is transitive.
 - c) R and S are symmetric implies $R \cup S$ is symmetric.
 - d) R and S are reflexive implies $R \cap S$ is reflexive.
- 11. $A = \{1, 2, 3, 4\}, B\{1, 2, 3, 4, 5, 6\}$ are two sets, and function $f:A \to B$ is defined by f(x)
- $= x + 2 \ \forall x \in A$, then the function f is
 - a) Bijective
- b) Onto
- c) One-one
- d) Many-one
- 12. Let f(x) = x + 1 and $\phi(x) = x 2$. Then the values of x satisfying $|f(x) + \phi(x)| = |f(x)| + 1$ $|\phi(x)|$ are:
 - a) $(-\infty,1]$
- b) $[2,\infty)$
- c) $(-\infty, -2]$
- d)[1, ∞)

- 13. The domain of the function $f(x) = \frac{\sin^{-1}(3-x)}{\log_e(|x|-2)}$, is
 - a) [2, 4]
- b) $(2, 3) \cup (3, 4]$
- c) [2, 3)
- d) $(-\infty, -3) \cup [2, \infty)$

- 14. If $f(x) = \frac{1}{\sqrt{|x| x}}$ then, domain of f(x) is
 - a) $(-\infty, 0)$
- b) $(-\infty, 2)$
- d) None of the above

- 15. The domain of definition of
- $f(x) = \log_{10} \{(\log_{10} x)^2 5 \log_{10} x + 6\}$, is
 - a) $(0, 10^2)$
- b) $(10^3, \infty)$
- c) $(10^2, 10^3)$
- d) $(0, 10^2) \cup (10^3, \infty)$

- 16. If a function f(x) satisfies the condition
- $f\left(x+\frac{1}{x}\right)=x^2+\frac{1}{x^2}, x \neq 0$, then f(x) equals
 - a) x^2 –2for all $x \neq 0$
 - b) x^2 –2 for all x satisfying $|x| \ge 2$
 - c) x^2 –2for all x satisfying |x| < 2
 - d) None of these
- 17. The period of the function $f(x) = \sin\left(\frac{2x+3}{6\pi}\right)$, is a) 2π b) 6π

- d) None of these
- 18. $f:R \rightarrow R$ is a function defined by $f(x) = 10 \ x 7$. If $g = f^{-1}$, then $g(x) = 10 \ x 7$.
 - a) $\frac{1}{10 x 7}$
- b) $\frac{1}{10x+7}$ c) $\frac{x+7}{10}$ d) $\frac{x-7}{10}$

19. If f(x) = [x - 2], where [x] denotes the greatest integer less than or equal to x, then f(2, 5) is equal to

a) $\frac{1}{2}$

b)0

c) 1

d) Does not exist

The domain of definition of

$$f(x) = \sqrt{\log_{10}(\log_{10}x) - \log_{10}(4 - \log_{10}x) - \log_{10}3},$$

$$\log_{10}(4 - \log_{10}x) - \log_{10}(4 - \log_{10}x) - \log_{10}3$$

a)
$$(10^3, 10^4)$$

b)
$$[10^3, 10^4]$$

c)
$$[10^3, 10^4)$$

d)
$$(10^3, 10^4]$$

