

CLASS : XIth DATE : **SUBJECT : MATHS DPP NO. :5**

Topic :-relations and functions

1. Let $f:N \rightarrow Y$ be a function defined as f(x) = 4x + 3 where $Y = \{y \in N: y = 4x + 3 \text{ for some } x \in N\}$. Show that f is invertible and its inverse is

a) $g(y) = \frac{y-3}{4}$ b) $g(y) = \frac{3y+4}{3}$ c) $g(y) = 4 + \frac{y+3}{4}$ d) $g(y) = \frac{y+3}{4}$

- 2. If $f(x) = \sqrt{\cos(\sin x)} + \sqrt{\sin(\cos x)}$, then range of f(x) is a) $[\sqrt{\cos 1}, \sqrt{\sin 1}]$ b) $[\sqrt{\cos 1}, 1 + \sqrt{\sin 1}]$ c) $[1 - \sqrt{\cos 1}, \sqrt{\sin 1}]$ d) None of these
- 3. Let $f:A \rightarrow B$ and $g:B \rightarrow C$ be two functions such that $gof:A \rightarrow C$ is onto and g is one-one. Then, a) *f* is one-one
 - b) *f* is onto
 - c) f is both one-one and onto
 - d) None of these

4. Let $f:(e,\infty) \rightarrow R$ be defined by $f(x) = \log[\log(\log x)]$, then

- a) *f* is one-one but not onto
- b) *f* is onto but not one-one
- c) *f* is both one-one and onto
- d) *f* is neither one-one nor onto

5. If $f:[-6, 6] \rightarrow R$ is defined by $f(x) = x^2 - 3$ for $x \in R$, then (fof of)(-1) + (fof of)(0) + (fof of)(1) is equal to

a) $f(4\sqrt{2})$ b) $f(3\sqrt{2})$ c) $f(2\sqrt{2})$ d) $f(\sqrt{2})$

6. Let $f: R = \{n\} \rightarrow R$ be a function defined by $f(x) = \frac{x-m}{x-n}$, where $m \neq n$. Then, a) *f* is one-one onto b) *f* is one-one into c) *f* is many one onto d) *f* is may one into

- 7. Let f(x) = x,g(x) = 1/x and h(x) = f(x)g(x). Then, h(x) = 1, if
 a) xis any rational number
 b) xis a non-zero real number
 c) xis a real number
 d) xis a rational number
- 8. Which of the following is not periodic? a) $|\sin 3x| + \sin^2 x$ b) $\cos \sqrt{x} + \cos^2 x$ c) $\cos 4x + \tan^2 x$ d) $\cos 2x + \sin x$

- 9. If $f(x) = 2^x$, then f(0), f(1), f(2), ... are in a) AP b) GP c) HP d) Arbitrary
- 10. If $f(\sin x) f(-\sin x) = x^2 1$ is defined for all $x \in R$, then the value of $x^2 2$ can be a) 0 b) 1 c) 2 d) -1

11. If $x \in R$, then $f(x) = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ is equal to a) $2\tan^{-1}x$ b) $\begin{cases} 2\tan^{-1}x, & x \ge 0 \\ -2\tan^{-1}x, & x \le 0 \end{cases}$ c) $\begin{cases} \pi + 2\tan^{-1}x, & x \ge 0 \\ -\pi + 2\tan^{-1}x, & x \le 0 \end{cases}$ d) None of these

12. Domain of the function $f(x) = \sin^{-1}(\log_2 x)$ in the set of real numbers is a) $\{x: 1 \le x \le 2\}$ b) $\{x: 1 \le x \le 3\}$ c) $\{x: -1 \le x \le 2\}$ d) $\{x: \frac{1}{2} \le x \le 2\}$

13. If $f : R \to R$ and $g : R \to R$ are given by f(x) = |x| and g(x) = [x] for each $x \in R$, then $\{x \in R : g(f(x)) \le f(g(x))\} =$

18. If *X* and *Y* are two non-empty sets where $f:X \rightarrow Y$ is function is defined such that $f(C) = \{f(x): x \in C\}$ for $C \subseteq X$ And $f^{-1}(D) = \{x: f(x) \in D\}$ for $D \subseteq Y$, For any $A \subseteq X$ and $B \subseteq Y$, then a) $f^{-1}(f(A)) = A$ b) $f^{-1}(f(A)) = A$ only if f(X) = Yc) $f(f^{-1}(B)) = B$ only if $B \subseteq f(x)$ d) $f(f^{-1}(B)) = B$

19.	If $f(-x) = -f(x)$, then	f(x) is
	a) An even function	b) An odd function

c) Neither odd nor evend) Periodic function

20. If
$$f:[-2, 2] \rightarrow R$$
 is defined by
 $f(x) = \begin{cases} -1, \text{ for } -2 \le x \le 0 \\ x - 1, \text{ for } 0 \le x \le 2 \end{cases}$
Then $\{x \in [-2,2]: x \le 0 \text{ and } f(|x|) = x\} =$
a) $\{-1\}$ b) $\{0\}$ c) $\{-1/2\}$ d) φ

