CLASS : XIth
SUBJECT : MATHS
DATE :

Topic :-RELATIONS AND FUNCTIONS

1. Let $f: R \rightarrow R$ be define by $f(x)=3 x-4$.Then, $f^{-1}(x)$ is
a) $\frac{x+4}{3}$
b) $\frac{x}{3}-4$
c) $3 x+4$
d) None of these
2. The interval in which the function $y=\frac{x-1}{x^{2}-3 x+3}$ transforms the real line is
a) $(0, \infty)$
b) $(-\infty, \infty)$
c) $[0,1]$
d) $[-1 / 3,1]-\{0\}$
3. The domain of definition of the function $f(x)=x^{\frac{1}{\log _{10} x}}$, is
a) $(0,1) \cup(1, \infty)$
b) $(0, \infty)$
c) $[0, \infty)$
d) $[0,1) \cup(1, \infty)$
4. Let W denotes the words in the English dictionary. Define the relation R by $R=\{(x, y) \in W \times W$:the world x and y have at least one letter in common $\}$. Then, R is
a) Reflexive, symmetric and not transitive
b) Reflexive, symmetric and transitive
c) Reflexive, not symmetric and transitive
d) Not reflexive, symmetric and transitive
5. The function $f: C \rightarrow C$ defined by $f(x)=\frac{a x+b}{c x+d}$ for $x \in C$ where $b d \neq 0$ reduces to a constant function, if
a) $a=c$
b) $b=d$
c) $a d=b c$
d) $a b=c d$
6. Let $A=\{x, y, z\}, B=\{u, v, \omega\}$ and $f: A \rightarrow B$ be defined by $f(x)=u, f(y)=v, f(z)=\omega$.Then, f is
a) Surjective but not injective
b) Injective but not surjective
c) Bijective
d) None of these
7. Consider the following relations $R=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}, \mathrm{y}$ are real numbers and $\mathrm{x}=\mathrm{wy}$ for some rational number w$\} ; S=\left\{\left.\left(\frac{m}{n}, \frac{p}{q}\right) \right\rvert\, m, n, p\right.$ and q are integers such that $n, q \neq 0$ and $\left.q m=p n\right\}$. Then
a) R is an equivalence relation but S is not an equivalence relation
b) \quad Neither R nor S is an equivalence relation
c) S is an equivalence relation but R is not an equivalence relation
d) $\quad R$ and S both are equivalence relations
8. Which of the following functions has period π ?
a) $|-\tan x|+\cos 2 x$
b) $2 \sin \frac{\pi x}{3}+3 \cos \frac{2 \pi x}{3}$
c) $6 \cos \left(2 \pi x+\frac{\pi}{4}\right)+5 \sin \left(\pi x+\frac{3 \pi}{4}\right)$
d) $|\tan 2 x|+|\sin 4 x|$
9. The range of the function $f(x)=\sqrt{(x-1)(3-x)}$ is
a) $[0,1]$
b) $(-1,1)$
c) $(-3,3)$
d) $(-3,1)$
10. Let $A=\{x, y, z\}$ and $B=\{a, b, c, d\}$. Which one of the following is not a relation from A to B ?
a) $\{(x, a),(x, c)\}$
b) $\{(y, c),(y, d)\}$
c) $\{(z, a),(z, d)\}$
d) $\{(z, b),(y, b),(a, d)\}$
11. If $f(x)$ defined on $[0,1]$ by the rule
$f(x)=\left\{\begin{array}{c}x, \text { if } x \text { is rational } \\ 1-x, \text { if } x \text { is irrational }\end{array}\right.$
Then, for all $x \in[0,1], f(f(x))$ is
a) Constant
b) $1+x$
c) x
d) None of these
12. Let $f(x)=\min \left\{x, x^{2}\right\}$, for every $x \in R$. Then,
a) $f(x)=\left\{\begin{array}{cl}x, & x \geq 1 \\ x^{2}, & 0 \leq x<1 \\ x, & x<0\end{array}\right.$
b) $\quad f(x)= \begin{cases}x^{2}, & x \geq 1 \\ x, & x<1\end{cases}$
c) $f(x)= \begin{cases}x, & x \geq 1 \\ x^{2}, & x<1\end{cases}$
d) $\quad f(x)=\left\{\begin{array}{c}x^{2}, \quad x \geq 1 \\ x, \quad 0 \leq x<1 \\ x^{2}, \quad x<0\end{array}\right.$
13. If $X=\{1,2,3,4\}$, then one-one onto mappings $f: X \rightarrow X$ such that $f(1)=1, f(2) \neq 2, f(4) \neq 4$ are given by
a) $f=\{(1,1),(2,3),(3,4),(4,2)\}$
b) $f=\{(1,2),(2,4),(3,3),(4,2)\}$
c) $f=\{(1,2),(2,4),(3,2),(4,3)\}$
d) None of these
14. The domain of the function $f(x)=\exp \left(\sqrt{5 x-3-2 x^{2}}\right)$ is
a) $[3 / 2, \infty)$
b) $[1,3 / 2]$
c) $(-\infty, 1)$
d) $(1,3 / 2)$
15. $f(x)=x+\sqrt{x^{2}}$ is a function from R to R, then $f(x)$ is
a) Injective
b) Surjective
c) Bijective
d) None of these
16. If $f(x)=\frac{\sin ^{4} x+\cos ^{2} x}{\sin ^{2} x+\cos ^{4} x}$ for $x \in R$, then $f(2010)=$
a) 1
b) 2
c) 3
d) 4
17. If $b^{2}-4 a c=0, a>0$, then the domain of the function $f(x)=$ $\left.\log \left\{a x^{3}+(a+b) x^{2}+(b+c) x+c\right)\right\}$ is
a) $R-\left\{-\frac{b}{2 a}\right\}$
b) $R-\left\{\left\{-\frac{b}{2 a}\right\} \cup\{x \mid x \geq-1\}\right\}$
c) $R-\left\{\left\{-\frac{b}{2 a}\right\} \cap(-\infty,-1]\right\}$
d) None of these
18. The inverse of the function $y=\frac{10^{x}-10^{-x}}{10^{x}+10^{-x}}$ is
a) $\frac{1}{2} \log _{10}\left(\frac{1+x}{1-x}\right)$
b) $\frac{1}{2} \log _{10}\left(\frac{2+x}{2-x}\right)$
c) $\frac{1}{2} \log _{10}\left(\frac{1-x}{1+x}\right)$
d) None of these
19. If $f: R \rightarrow R$ is given by
$f(x)=\left\{\begin{array}{l}-1 \text {, when } x \text { is rational } \\ 1, \text { when } x \text { is irrational }\end{array}\right.$
Then $(f o f)(1-\sqrt{3})$ is equal to
a) 1
b) -1
c) $\sqrt{3}$
d) 0
20. The function $f: R \rightarrow R$ defined by $f(x)=6^{x}+6^{|x|}$, is
a) One-one and onto
b) Many one and onto
c) One-one and into
d) Many one and into
