

CLASS: XIth DATE:

SUBJECT: MATHS

DPP NO.:10

1. Let $f:(-1,1) \rightarrow B$, be a function defined by $f(x) = \tan^{-1} \frac{2x}{1-x^2}$, then f is both one-one and onto when B is the interval

a)
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

b)
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

c)
$$[0, \frac{\pi}{2})$$

d)
$$\left(0, \frac{\pi}{2}\right)$$

2. If $f:R \to R$ defined by $f(x) = x^3$, then $f^{-1}(8)$ is equal to

b)
$$\{2, \omega, 2\omega^2\}$$

c)
$$\{2, -2\}$$

$$d){2,2}$$

3. The set of all *x* for which there are no functions

 $f(x) = \log_{(x-2)/(x+3)} 2$ and $g(x) = \frac{1}{\sqrt{x^2 - 9}}$, is

a)
$$[-3, 2]$$

b)
$$[-3, 2)$$

c)
$$(-3, 2]$$

$$d)(-3, -2)$$

4. Which of the following functions is (are) not an injective map(s)?

a)
$$f(x) = |x + 1|, x \in [-1, \infty)$$

b)
$$g(x) = x + \frac{1}{x}, x \in (0, \infty)$$

c)
$$h(x) = x^2 + 4x - 5, x \in (0, \infty)$$

$$d) k(x) = e^{-x}, x \in [0, \infty)$$

5. If
$$f: N \to Z$$
 is defined by
$$f(n) = \begin{cases} 2 & \text{if } n = 3k, k \in Z \\ 10 & \text{if } n = 3k + 1, k \in Z, \\ 0 & \text{if } n = 3k + 2, k \in Z \end{cases}$$

Then $\{n \in N: f(n) > 2\}$ is equal to

6. If $f(x) = \frac{2x-1}{x+5}(x \neq -5)$, then $f^{-1}(x)$ is equal to $a) \frac{x+5}{2x-1}, x \neq \frac{1}{2} \qquad b) \frac{5x+1}{2-x}, x \neq 2 \qquad c) \frac{x-5}{2x+1}, x \neq \frac{1}{2} \qquad d) \frac{5x-1}{2-x}, x \neq 2$

$$a)\frac{x+5}{2x-1}, x \neq \frac{1}{2}$$

b)
$$\frac{5x+1}{2-x}$$
, $x \neq 2$

c)
$$\frac{x-5}{2x+1}$$
, $x \neq \frac{1}{2}$

d)
$$\frac{5x-1}{2-x}$$
, $x \neq 2$

If a,b are two fixed positive integers such that

$$f(a+x) = b + \left[b^3 + 1 - 3b^2 f(x) + 3b \left\{f(x)\right\}^2 - \left\{f(x)\right\}^3\right]^{1/3}$$

For all $x \in R$, then f(x) is a periodic function with period

8. 1 +	3. Let A be a set containing 10 distinct elements, then the total number of distinct function from 4 to A is				
Дυ	a) 10^{10}	b) 101	c) 2 ¹⁰	d) $2^{10} - 1$	
	,	, -	- 7	• •	
9.	If Q denotes the set of all rational numbers and $f(\frac{p}{q}) = \sqrt{p^2 - q^2}$ for any $\frac{p}{q} \in Q$, then observe				
the following statements.					
I. $f\left(\frac{p}{q}\right)$ is real for each $\frac{p}{q} \in Q$.					
II. $f\left(\frac{p}{q}\right)$ is a complex number for each $\frac{p}{q} \in \mathcal{Q}$.					
Which of the following is correct?					
	a) Both I and II are t	rue	b) I is true, II is fal	se	
	c) I is false, II is true	!	d) Both I and II are	e false	
10. The domain of the function $f(x) = \log_{3+x}(x^2 - 1)$ is					
	a) $(-3, -1) \cup (1, 9)$		b) $[-3, -1] \cup [1,$	∞]	
	c) $(-3, -2) \cup (-2)$	2, −1) ∪ (1, ∞)	d)[-3, -2) ∪ (-	-2, -1) ∪ (1, ∞)	
11.	1. Let $A = R - \{3\}, B = R - \{1\}$. Let $f: A \to B$ be defined by $f(x) = \frac{x-2}{x-3}$. Then,				
	a) <i>f</i> is bijective		b) f is one-one but	t not onto	
			d) None of the abo	ve	
12.	2. Let $f(x) = \frac{\sqrt{\sin x}}{1 + \sqrt[3]{\sin x}}$. If D is the domain of f , then D contains				
	a) $(0, \pi)$	b) $(-2 \pi, -\pi)$	c) $(3 \pi, 4 \pi)$	d) $(4 \pi, 6 \pi)$	
13	13. Let $f:R \to R$ and $g:R \to R$ be given by $f(x) = 3x^2 + 2$ and $g(x) = 3x - 1$ for all $x \in R$. Then,				
101	a) $f \circ g(x) = 27x^2 - 18x + 5$				
	b) $f \circ g(x) = 27x^2 + 18x - 5$				
	c) $gof(x) = 9x^2 - 5$				
	d) $gof(x) = 9x^2 + 15$				
14.	The domain of d	efinition of the function			
$f(x) = \frac{1}{\sqrt{ x - x}}, \text{ is}$					
	a) <i>R</i>	b) (0, ∞)	c) (− ∞,0)	d) None of these	
15. Let $f:A \rightarrow B$ and $g:B \rightarrow A$ be two functions such that $f \circ g = I_B$. Then,					
20.	a) fandg both are injections				
	b) f andg both are surjections				
	c) f is an injection and g is a surjection				
	d) f is a surjection and g is an injection				

16. If $f(x) = x^2 - 1$ and $g(x) = (x+1)^2$, then $(g \circ f)(x)$ is a) $(x+1)^4 - 1$ b) $x^4 - 1$ c) x^4

d) $(x + 1)^4$

- 17. If $f:R\to R$ satisfies f(x+y)=f(x)+f(y), for all $x,y\in R$ and f(1)=7, then $\sum_{r=1}^n f(r)$ is b) $\frac{7(n+1)}{2}$ c) 7n(n+1)a) $\frac{7n}{2}$
- 18. If $f(x) = 2x^4 13x^2 + ax + b$ is divisible by $x^2 3x + 2$, then (a, b) is equal to a) (-9, -2)b) (6, 4) c) (9, 2) d)(2,9)
- 19. Let $f:R \to R$ be a function defined by $f(x) = \frac{x^2 8}{x^2 + 2}$ Then, f is
 - a) One-one but not onto
 - b) One-one and onto
 - c) Onto but not one-one
 - d) Neither one-one nor onto
- 20. The domain of the function $f(x) = \frac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}$, is
 - a) [1, 2)
- c) [1, 2]
- d)[2,3]

