

CLASS: XIth DATE:

SUBJECT: MATHS

DPP NO.:1

- 1. Let $A = \{x : -1 \le x \le 1\}$ and $f : A \to A$ such that f(x) = x|x|, then f is
 - a) A bijection
 - b) Injective but not surjective
 - c) Surjective but not injective
 - d) Neither injective nor surjective
- The domain of the function $\sin^{-}(\log_2 \frac{x^2}{2})$ is

3. If f(x) = ax + b and g(x) = cx + d, then f(g(x)) = g(f(x)) is equivalent to

a)
$$f(a) = f(c)$$

$$\mathbf{b})f(b) = g(b)$$

b)
$$f(b) = g(b)$$
 c) $f(d) = g(b)$

$$d) f(c) = g(a)$$

4. The period of the function $f(x) = \sin^4 3x + \cos^4 3x$ is

a)
$$\pi/2$$

b)
$$\pi/3$$

c)
$$\pi/6$$

d) None of these

5. Given $f(x) = \log_{10}\left(\frac{1+x}{1-x}\right)$ and $g(x) = \frac{3x+x^3}{1+3x^2}$, then $f \circ g(x)$ equals

a)
$$-f(x)$$

b)
$$3 f(x)$$

c)
$$[f(x)]^3$$

d) None of these

6. Which of the following functions is not an are not an injective map(s)?

a)
$$f(x) = |x + 1|, x \in [-1, \infty)$$

b)
$$g(x) = x + \frac{1}{x}$$
, $x ∈ (0, ∞)$

c)
$$h(x) = x^2 + 4x - 5, x \in (0, \infty)$$

$$d) h(x) = e^{-x}, x \in [0, \infty)$$

- 7. If $f:R \to R$ and $g:R \to R$ are defined by f(x) = x [x] and g(x) = [x] for $x \in R$, where [x] is the greatest integer not exceeding x, then for every $x \in R$, f(g(x)) is equal to
 - a) x

b)0

- c) f(x)
- d)g(x)

- The domain of definition of $f(x) = \sqrt{\frac{\log_{0.3}|x-2|}{|x|}}$, is
 - a) $[1, 2) \cup (2, 3]$
- b)[1, 3]
- c) R (1, 3]
- d) None of these

- 9. $f:R \rightarrow R$ given by $f(x) = 5 3\sin x$, is
 - a) One-one
- b) Onto
- c) One-one and onto
- d) None of these

- 10. If f(x + 2y, x 2y) = xy, then f(x,y) equals
 - a) $\frac{x^2 y^2}{8}$ b) $\frac{x^2 y^2}{4}$
- c) $\frac{x^2 + y^2}{4}$
- d) $\frac{x^2 y^2}{2}$
- 11. If $f:R \to R$ is defined as $f(x) = (1-x)^{1/3}$, then $f^{-1}(x)$ is a) $(1-x)^{-1/3}$ b) $(1-x)^3$ c) 1-x

- d) $1 x^{1/3}$

- 12. If f(x + 2y,x,x 2y) = xy, then f(x, y) equals
 - a) $\frac{x^2 y^2}{8}$ b) $\frac{x^2 y^2}{4}$

- 13. Let $f:[4, \infty[\to [4, \infty[$ be defined by $f(x) = 5^{x(x-4)}$ then $f^{-1}(x)$ a) $2 \sqrt{4 + \log_5 x}$ b) $2 + \sqrt{4 + \log_5 x}$ c) $\left(\frac{1}{5}\right)^{x(x-4)}$

- d) Not defined
- 14. If $f:[2,3] \rightarrow R$ is defined by $f(x) = x^3 + 3x 2$, then the range f(x) is contained in the interval
 - a) [1, 12]
- b)[12, 34]
- c) [35, 50]
- d)[-12, 12]

- 15. The period of $\sin^2 \theta$, is
 - a) π^2

b) π

c) 2π

 $d)\pi/2$

- 16. If $n \in N$, and the period of $\frac{\cos nx}{\sin \left(\frac{x}{n}\right)}$ is 4π , then n is equal to
 - a) 4

b)3

c) 2

d)1

- 17. Foe real *x*, let $f(x) = x^3 + 5x + 1$, then
 - a) f is one-one but not onto R
- b) *f* is onto *R* but not one-one

c) *f* is one-one and onto *R*

- d) *f* is neither one-one nor onto *R*
- 18. The range of the function $f(x) = \frac{1}{2 \cos 3x}$ is
 - a) [-1/3, 0]

- c) [1/3, 1]
- d) None of these
- 19. Let $A = \{2, 3, 4, 5, ..., 16, 17, 18\}$. Let be the equivalence relation on $A \times A$, cartesian product of A and A, defined by $(a, b) \approx (c, d)$ if ad = bc, then the number of ordered pairs of the equivalence class of (3, 2) is
 - a) 4

b)5

c) 6

- d)7
- 20. Let *n* be the natural number. Then, the range of the function $f(n) = 8 n_{P_n-4}$, $4 \le n \le 6$, is
 - a) $\{1, 2, 3, 4\}$
- b){1, 2, 3, 4, 5, 6} c){1, 2, 3}
- $d){1, 2, 3, 4, 5}$