

CLASS : XIth DATE :

SOLUTIONS

SUBJECT : MATHS DPP NO. :4

Topic :-RELATIONS AND FUNCTIONS

(a) 1 Let $f^{-1}(x) = y$. Then, $x = f(y) \Rightarrow x = 3 \ y - 4 \Rightarrow y = \frac{x+4}{3}$ $\therefore f^{-1}(x) = y \Rightarrow f^{-1}(x) = \frac{x+4}{3}$ 2 (d) Here, we have to find the range of the function which is [-1/3, 1]3 (a) For f(x) to be real, we must have x > 0 and $\log_{10} x \neq 0$ $\Rightarrow x > 0$ and $x \neq 1 \Rightarrow x > 0$ and $x \neq 1 \Rightarrow x \in (0, 1) \cup (1, \infty)$ 4 (a) Let $W = \{cat, toy, you, ...\}$ Clearly, *R* is reflexive and symmetric but not transitive. [Since, $_{cat}R_{toy}$, $_{toy}R_{you} \Rightarrow _{cat}R_{you}$] 5 **(c)** Given, $f(x) = \frac{ax+b}{cx+d}$ It reduces the constant function if $\frac{a}{c} = \frac{b}{d} \Rightarrow ad = bc$ 7 (c) Since, the relation *R* is defined as $R = \{(x, y) | x, y \text{ are real numbers and } x = wy \text{ for some rational number } w\}$ (i) Reflexive $xRx \Rightarrow x = wx$:. $w = 1 \in$ Rational number \Rightarrow The relation *R* is reflexive. (ii) Symmetric $xRy \Rightarrow yRx$ As 0*R*1 $\Rightarrow 0 = 0$ (1) but $1R0 \Rightarrow 1 = w.(0)$, Which is not true for any rational number \Rightarrow The relation *R* is not symmetric

Thus, *R* is not equivalent relation. Now, for the relation *S* is defined as

$$S = \left\{ \left(\frac{m}{n}, \frac{m}{n} \right) \right|$$

m, *n*, *p* and *q* ∈ integers such that *n*, *q* ≠ 0 and *qm* = *pn*}
() Reflexive $\frac{m}{n} S_{m}^{m} \Rightarrow mn = mn$ (True)
 \Rightarrow The relation *S* is reflexive
(ii) Symmetric $\frac{m}{n} S_{q}^{n} \Rightarrow mq = np$
 $\Rightarrow np = mq \Rightarrow \frac{p}{q} S \frac{m}{n}$
 \Rightarrow The relation *S* is symmetric.
(iii) Transitive $\frac{m}{n} S_{q}^{q}$ and $\frac{p}{q} S_{s}^{r}$
 $\Rightarrow mq = np$ and $ps = rq$
 $\Rightarrow mq = np$ and $ps = rq$
 $\Rightarrow mg = np$ and $ps = rq$
 $\Rightarrow ms = nr \Rightarrow \frac{m}{n} = \frac{r}{s} \Rightarrow \frac{m}{n} S_{s}^{r}$
 \Rightarrow The relation *S* is transitive
 \Rightarrow The relation *S* is transitive
 \Rightarrow The relation *S* is equivalent relation.
8 (a)
We know that tan *x* has period *n*. Therefore, $|\tan x|$ has period $\frac{\pi}{2}$. Also, cos 2*x* has period *n*.
Therefore, period of $|\tan x| + \cos 2x \sin n$.
Clearly, $2\sin \frac{\pi x}{3} + 3\cos \frac{2\pi x}{3}$ has its period equal to the LCM of 6 and 3 i.e., 6
 $6\cos(2\pi x + \pi/4) + 5\sin(\pi x + 3\pi/4)$ has period 2
The function $|\tan 4x| + |\sin 4x|$ has period $\frac{\pi}{2}$
9 (a)
Let $y = f(x) = \sqrt{(x-1)(3-x)}$
 $\Rightarrow x^{2} - 4x + 3 + y^{2} = 0$
This is a quadratic in *x*, we get
 $x = \frac{+4 \pm \sqrt{16 - 4(3 + y^{2})}}{2(1)} = \frac{4 \pm 2\sqrt{1 - y^{2}}}{2(1)}$
Since, *x* is real, then $1 - y^{2} \ge 0 \Rightarrow -1 \le y \le 1$
But $f(x)$ attains only non-negative values.
Hence, $y = f(x) = [0, 1]$
10 (d)
(for $x \ge 1$, we have
 $x \le x^{2} \to \min\{x, x^{2}\} = x$
For $0 \le x < 1$, we have,
 $x \le x^{2} \to \min\{x, x^{2}\} = x$
For $0 \le x < 1$, we have,
 $x^{2} < x \Rightarrow \min\{x, x^{2}\} = x^{2}$
For $x < 0$, we have

 $x < x^2 \Rightarrow \min\{x, x^2\} = x$ Hence, $f(x) = \min\{x, x^2\} = \begin{cases} x, & x > 1 \\ x^2, & 0 \le x < 1 \\ x. & x < 0 \end{cases}$ <u>ALITER</u> Draw the graphs of y = x and $y = x^2$ to obtain f(x)13 (a) Clearly, mapping *f* given in option (a) satisfies the given conditions 14 (b) Given, $f(x) = e^{\sqrt{5x-3-2x^2}}$ For domain of f(x) $2x^2 - 5x + 3 < 0$ $\Rightarrow (2x-3)(x-1) \le 0$ $1 \le x \le \frac{3}{2}$ ⇒ \therefore Domain of $f(x) = \left[1, \frac{3}{2}\right]$. 15 (d) Given, $f(x) = x + \sqrt{x^2}$ Since, this function is not defined 16 (a) We have, $f(x) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}$ $\Rightarrow f(x) = \frac{(1 - \cos^2 x)^2 + \cos^2 x}{1 - \cos^2 x + \cos^4 x} = 1$ for all $x \in R$:: f(2010) = 117 (c) We have, $f(x) = \log\{ax^3 + (a+b)x^2 + (b+c)x + c\}$ $\Rightarrow f(x) = \log\{(ax^2 + bx + c)(x+1)\}$ $\Rightarrow f(x) = \log\left\{a\left(x + \frac{b}{2a}\right)^2(x+1)\right\}$ $\Rightarrow f(x) = \log a + \log \left(x + \frac{b}{2a}\right)^2 + \log(x+1)$ Since a > 0, therefore f(x) is defined for $x \neq -\frac{b}{2a}$ and x + 1 > 0i.e., $x \in R - \left\{ \left\{ -\frac{b}{2a} \right\} \cap (-\infty, -1) \right\}$ 18 (a) $\therefore \qquad y = \frac{10^x - 10^{-x}}{10^x + 10^{-x}}$ $\Rightarrow \quad \frac{y+1}{y-1} = \frac{10^x}{-10^{-x}}$

[using componendo and dividendo rule]

$$\Rightarrow 10^{2x} = \frac{1+y}{1-y}$$

$$\Rightarrow 2x \log_{10} 10 = \log_{10} \left(\frac{1+y}{1-y}\right)$$

$$\Rightarrow x = \frac{1}{2} \log_{10} \left(\frac{1+y}{1-y}\right)$$

$$\therefore f^{-1}(x) = \frac{1}{2} \log_{10} \left(\frac{1+x}{1-x}\right)$$
19 **(b)**
Given, $f(x) = \left\{-1, \text{ when } x \text{ is rational} \\ \text{Now, } (f \circ f)(1 - \sqrt{3}) = f[f(1 - \sqrt{3})] = f(1) = -1$
20 **(c)**
We have,
 $f(x) = 6^x + 6^{|x|} > 0 \text{ for all } x \in R$

$$\therefore \text{ Range } (f) \neq (\text{Co} - \text{domain } (f)$$
So, $f:R \rightarrow R$ is an into function
For any $x, y \in R$, we find that
 $x \neq y \Rightarrow 2^x \neq 2^y \Rightarrow 2^{x+|x|} \neq 2^{y+|y|} \Rightarrow f(x) \neq f(y)$
So, f is one-one
Hence, f is a one-one into function

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	А	D	А	А	С	С	С	А	A	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	C	A	A	В	D	А	C	А	В	C

