CLASS : XIth
DATE :

SUBJECT : MATHS<br>DPP NO. :6

## Topic :-PROBABLITTY

1. If the probability density function of a random variable $X$ is $f(x)=\frac{x}{2}$ in $0 \leq x \leq 2$, then $P\left(\frac{X>15}{X>1}\right)$ is equal to
a) $\frac{7}{16}$
b) $\frac{3}{4}$
c) $\frac{7}{12}$
d) $\frac{21}{64}$
2. The probability that $A$ can solve a problem is $2 / 3$ and $B$ can solve it is $3 / 4$. If both attempt the problem, what is the probability that the problem gets solved?
a) $11 / 12$
b) $7 / 12$
c) $5 / 12$
d) $9 / 12$
3. Given $P(A \cup B)=0.6, P(A \cap B)=0.2$, the probability of exactly one of the event occurs is
a) 0.4
b) 0.2
c) 0.6
d) 0.8
4. Fifteen coupons are numbered 1 to 15 . Seven coupons are selected at random, one at a time with replacement. The probability that the largest number appearing on a selected coupon be 9 , is
a) $\left(\frac{1}{15}\right)^{7}$
b) $\left(\frac{8}{18}\right)^{7}$
c) $\left(\frac{3}{5}\right)^{7}$
d) None of these
5. A dice is rolled three times. The probability of getting a larger number than the previous number each time is
a) $\frac{15}{216}$
b) $\frac{5}{54}$
c) $\frac{13}{216}$
d) $\frac{1}{18}$
6. If $X$ has binomial distribution with mean $n p$ and variance $n p q$, then $\frac{P(X=k)}{P(X=k-1)}$ is equal to
a) $\frac{n-k}{k-1} \cdot \frac{p}{q}$
b) $\frac{n-k+1}{k} \cdot \frac{p}{q}$
c) $\frac{n+1}{k} \cdot \frac{q}{p}$
d) $\frac{n-1}{k+1} \cdot \frac{q}{p}$
7. The probability distribution of a random variable $X$ is given by
$X=x \quad: \quad 0 \quad 1 \quad 2 \quad 3 \quad 4$
$P(X=x): \begin{array}{llllll}0.4 & 0.3 & 0.1 & 0.1 & 0.1\end{array}$
The variance of $X$ is
a) 1.76
b) 2.45
c) 3.2
d) 4.8
8. A bag contains four tickets marked with numbers $112,121,211,222$. One ticket is drawn at random from the bag. Let $E_{i}(i=1,2,3)$ denote the event that $i$ th digit on the ticket is 2 . Then, which one of the following is incorrect?
a) $E_{1}$ and $E_{2}$ are independent
b) $E_{2}$ and $E_{3}$ are independent
c) $E_{3}$ and $E_{1}$ are independent
d) $E_{1}, E_{2}, E_{3}$ are independent
9. If $A$ and $B$ are two events, such that $P(A \cup B)=\frac{3}{4}, P(A \cap B)=\frac{1}{4}, P(\bar{A})=\frac{2}{3}$, then $P(\bar{A} \cap B)$ is equal to
a) $\frac{5}{12}$
b) $\frac{3}{8}$
c) $\frac{5}{8}$
d) $\frac{1}{2}$
10. Let $S$ be a set containing $n$ elements. Two subsets $A$ and $B$ os $S$ are chosen at random. The probability that $A \cup B=S$ is
a) $\frac{{ }^{2 n} C_{n}}{2^{2 n}}$
b) $\left(\frac{3}{4}\right)^{n}$
c) $\frac{1}{{ }^{2 n} C_{n}}$
d) None of these
11. A rod of length 10 cm is broken into three parts, so that each part is having a length as an integral multiple of 1 cm .. The probability that the parts are forming a triangle, is
a) $1 / 4$
b) $1 / 2$
c) $3 / 4$
d) $1 / 3$
12. The probability that a company executive will travel by train is $\frac{2}{3}$ and that he will travel by plane is $\frac{1}{5}$. The probability of his journey by train or plane is
a) $\frac{2}{15}$
b) $\frac{13}{15}$
c) $\frac{15}{13}$
d) $\frac{15}{2}$
13. A three digit number, which is a multiple of 11 , is chosen at random. Probability that the number so chosen is also a multiple of 9 , is equal to
a) $\frac{1}{9}$
b) $\frac{2}{9}$
c) $\frac{1}{100}$
d) $\frac{9}{100}$
14. Four positive integers are taken at random and are multiplied together. Then the probability that the product ends in an odd digit other than 5 , is
a) $609 / 625$
b) $16 / 625$
c) $2 / 5$
d) $3 / 5$
15. A pair of fair dice is thrown independently 4 times. The probability of getting a sum of exactly 7 twice is
a) $\frac{5}{81}$
b) $\frac{25}{243}$
c) $\frac{25}{216}$
d) $\frac{125}{648}$
16. Five horses are in a race. Mr. $A$ selects two of the horses at random and bets on them. The probability that Mr. $A$ selected the winning horse, is
a) $\frac{4}{5}$
b) $\frac{3}{5}$
c) $\frac{1}{5}$
d) $\frac{2}{5}$
17. A numbern is chosen at random from $S=\{1,2,3, \ldots, 50\}$.

Let $A=\left\{n \in S: n+\frac{50}{n}>27\right\}, B=\{n \in S: n$ is a prime $\}$ and
$C=\{n \in S: n$ is a square $\}$. Then, correct order of their probabilities is
a) $P(A)<P(B)<P(C)$
b) $P(A)>P(B)>P(C)$
c) $P(B)<P(A)<P(C)$
d) $P(A)>P(C)>P(B)$
18. A bag contains 5 white and 3 black balls and 4 balls are successively drawn out and not replaced. The probability that they are alternately of different colours, is
a) $\frac{1}{196}$
b) $\frac{2}{7}$
c) $\frac{1}{7}$
d) $\frac{13}{56}$
19. Three numbers are chosen at random from 1 to 20 . The probability that they are consecutive, is
a) $\frac{1}{190}$
b) $\frac{1}{120}$
c) $\frac{3}{190}$
d) $\frac{5}{190}$
20. Out of 40 consecutive natural numbers, two are chosen at random. Probability that the sum of the numbers is odd, is
a) $\frac{14}{29}$
b) $\frac{20}{39}$
c) $\frac{1}{2}$
d) None of these


