

SUBJECT: MATHS CLASS: XIth DPP NO.:6 DATE:

I opic:-probability								
1.	1. If the probability density function of a random variable <i>X</i> is $f(x) = \frac{x}{2}$ in $0 \le x \le 2$, then $P(\frac{X > 1}{X > 2})$ is equal to							
15 0	a) $\frac{7}{16}$	b) $\frac{3}{4}$	c) $\frac{7}{12}$	d) $\frac{21}{64}$				
2. The probability that A can solve a problem is $2/3$ and B can solve it is $3/4$. If both attempt the problem, what is the probability that the problem gets solved?								
	a) 11/12	b) 7/12	c) 5/12	d)9/12				
3.								
	a) 0.4	b) 0.2	c) 0.6	d) 0.8				
4. Fifteen coupons are numbered 1 to 15. Seven coupons are selected at random, one at a time with replacement. The probability that the largest number appearing on a selected coupon be 9, is								
	a) $\left(\frac{1}{15}\right)^7$	b) $\left(\frac{8}{18}\right)^7$	c) $\left(\frac{3}{5}\right)^7$	d) None of these				
5. A dice is rolled three times. The probability of getting a larger number than the previous number each time is								
	a) $\frac{15}{216}$	b) $\frac{5}{54}$	c) $\frac{13}{216}$	d) $\frac{1}{18}$				
6.	6. If <i>X</i> has binomial distribution with mean np and variance npq , then $\frac{P(X=k)}{P(X=k-1)}$ is equal to							
	a) $\frac{n-k}{k-1} \cdot \frac{p}{q}$		c) $\frac{n+1}{k} \cdot \frac{q}{p}$					
7. The probability distribution of a random variable X is given by $X = x$: 0 1 2 3 4 $P(X = x)$: 0.4 0.3 0.1 0.1 0.1								
Th	e variance of X is							
	a) 1.76	b) 2.45	c) 3.2	d)4.8				
8. A bag contains four tickets marked with numbers 112,121,211,222. One ticket is drawn at random from the bag. Let E_i ($i = 1,2,3$) denote the event that i th digit on the ticket is 2. Then, which								

ch one of the following is incorrect?

- a) E_1 and E_2 are independent
- b) E_2 and E_3 are independent

	c) E_3 and E_1 are independent d) E_1 , E_2 , E_3 are independent						
9.	If <i>A</i> and <i>B</i> are two events, such that $P(A \cup B) = \frac{3}{4}$, $P(A \cap B) = \frac{1}{4}$, $P(\overline{A}) = \frac{2}{3}$, then $P(\overline{A} \cap B)$ is equal						
to	a) $\frac{5}{12}$	b) $\frac{3}{8}$	c) $\frac{5}{8}$	d) $\frac{1}{2}$			
10. Let <i>S</i> be a set containing <i>n</i> elements. Two subsets <i>A</i> and <i>B</i> os <i>S</i> are chosen at random. The probability that $A \cup B = S$ is							
	a) $\frac{2^nC_n}{2^{2n}}$	b) $\left(\frac{3}{4}\right)^n$	c) $\frac{1}{2^n C_n}$	d) None of these			
11. A rod of length 10 cm is broken into three parts, so that each part is having a length as an integral multiple of 1 cm,. The probability that the parts are forming a triangle, is							
	a) 1/4	b) 1/2	c) 3/4	d) 1/3			
12. The probability that a company executive will travel by train is $\frac{2}{3}$ and that he will travel by							
plane is $\frac{1}{5}$. The probability of his journey by train or plane is							
	a) $\frac{2}{15}$	b) $\frac{13}{15}$	c) $\frac{15}{13}$	d) $\frac{15}{2}$			
13. A three digit number, which is a multiple of 11, is chosen at random. Probability that the number so chosen is also a multiple of 9, is equal to							
	a) $\frac{1}{9}$	b) $\frac{2}{9}$	c) $\frac{1}{100}$	d) $\frac{9}{100}$			
14. Four positive integers are taken at random and are multiplied together. Then the probability that the product ends in an odd digit other than 5, is							
01101	a) 609/625	b) 16/625	c) 2/5	d)3/5			
15. A pair of fair dice is thrown independently 4 times. The probability of getting a sum of exactly 7 twice is							
	a) $\frac{5}{81}$	b) $\frac{25}{243}$	c) $\frac{25}{216}$	d) $\frac{125}{648}$			
16.	Five horses are in a race. Mr. <i>A</i> selects two of the horses at random and bets on them. The						

16. Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse, is

a) $\frac{4}{5}$

b) $\frac{3}{5}$

c) $\frac{1}{5}$

 $d)^{\frac{2}{5}}$

17. A number *n* is chosen at random from $S = \{1, 2, 3, ..., 50\}$.

Let $A = \left\{ n \in S: n + \frac{50}{n} > 27 \right\}$, $B = \{ n \in S: n \text{ is a prime} \}$ and

 $\mathcal{C} = \{n \in S : n \text{ is a square}\}.$ Then, correct order of their probabilities is

a)
$$P(A) < P(B) < P(C)$$
 b) $P(A) > P(B) > P(C)$ c) $P(B) < P(A) < P(C)$ d) $P(A) > P(C) > P(B)$

- 18. A bag contains 5 white and 3 black balls and 4 balls are successively drawn out and not replaced. The probability that they are alternately of different colours, is
 - a) $\frac{1}{196}$

b) $\frac{2}{7}$

c) $\frac{1}{7}$

- d) $\frac{13}{56}$
- 19. Three numbers are chosen at random from 1 to 20. The probability that they are consecutive, is
 - a) $\frac{1}{190}$

b) $\frac{1}{120}$

c) $\frac{3}{190}$

- d) $\frac{5}{190}$
- 20. Out of 40 consecutive natural numbers, two are chosen at random. Probability that the sum of the numbers is odd, is
 - a) $\frac{14}{29}$

b) $\frac{20}{39}$

c) $\frac{1}{2}$

d) None of these

