CLASS : XIth
SUBJECT : MATHS
DATE :

Topic :-PROBABLITY

1. If A and B are two independent events, then the probability that only one of A and B occur is
a) $P(A)+P(B)-2 P(A \cap B)$
b) $P(A)+P(B)-P(A \cap B)$
c) $P(A)+P(B)$
d) None of these
2. Let $0<P(A)<1,0<P(B)<1$ and $P(A \cap B)=P(A)+P(B)-P(A) P(B)$, then
a) $P(B \mid A)=P(B)-P(A)$
b) $P\left(A^{c} \cup B^{c}\right)=P\left(A^{c}\right)+P\left(B^{c}\right)$
c) $P(A \cup B)^{c}=P\left(A^{c}\right) P\left(B^{c}\right)$
d) $P(A \mid B)=P(A)+P\left(B^{c}\right)$
3. The probability distribution of a random variable X is given as

\boldsymbol{X}-5-4-3-2-1012345
 $\boldsymbol{P}(\boldsymbol{X}) p 2 p 3 p 4 p 5 p 7 p 8 p 9 p 10 p 11 p 12 p$

Then, the value of P is
a) $\frac{1}{72}$
b) $\frac{3}{73}$
c) $\frac{5}{72}$
d) $\frac{1}{74}$
4. In a college 25% boys and 10% girls offer Mathematics. There are 60% girls in the college. If a Mathematics student is chosen at random, then the probability that the student is a girl, will be
a) $\frac{1}{6}$
b) $\frac{3}{8}$
c) $\frac{5}{8}$
d) $\frac{5}{6}$
5. A biased coin with probability $p, 0<p<1$ of heads is tossed until a head appears for the first time. If the probability that the number of tossed required is even is $\frac{2}{5}$, then p equals
a) $\frac{1}{3}$
b) $\frac{2}{3}$
c) $\frac{2}{5}$
d) $\frac{3}{5}$
6. For any two independent events E_{1} and $E_{2}, P\left\{\left(E_{1} \cup E_{2}\right) \cap\left(\bar{E}_{1}\right) \cap\left(\bar{E}_{2}\right)\right\}$ is
a) $\leq 1 / 4$
b) $>1 / 4$
c) $\geq 1 / 2$
d) None of these
7. A and B are the independent events. The probability that both occur simultaneously is $\frac{1}{6}$ and the probability that neither occur is $\frac{1}{3}$. The probability of occurrence of the events A and B is
a) $\frac{1}{2}, \frac{3}{2}$
b) $\frac{1}{2}, \frac{1}{3}$
c) Not possible
d) None of these
8. If in a distribution each x is replaced by corresponding value of $f(x)$, then the probability of getting $f\left(x_{i}\right)$ when the probability of getting x_{i} is p_{i}, is
a) p_{i}
b) $f\left(p_{i}\right)$
c) $f\left(\frac{1}{p_{i}}\right)$
d) None of these
9. The distribution of a random variable X is given below

$$
X-2-10123
$$

$$
\boldsymbol{P}(\boldsymbol{X}) \frac{1}{10} \quad \mathrm{k} \quad \frac{1}{5} \quad 2 \mathrm{k} \quad \frac{3}{10} \quad \mathrm{k}
$$

The value of k is
a) $\frac{1}{10}$
b) $\frac{2}{10}$
c) $\frac{3}{10}$
d) $\frac{7}{10}$
10. The probability that a man can hit a target is $3 / 4$. He tries 5 times. The probability that he will hit the target at least three times is
a) $291 / 364$
b) $371 / 464$
c) $471 / 502$
d) $459 / 512$
11. Two cards are drawn from a well shuffled deck of 52 cards. The probability that one is red card and the other is a queen is
a) $4 / 51$
b) $16 / 221$
c) $50 / 663$
d) None of these
12. If $4 P(A)=6 P(B)=10 P(A \cap B)=1$, then $P\left(\frac{B}{A}\right)$ is equal to
a) $\frac{2}{5}$
b) $\frac{3}{5}$
c) $\frac{7}{10}$
d) $\frac{19}{60}$
13. In a binomial distribution, the mean is 4 and variance is 3 . Then, its mode is
a) 5
b) 6
c) 4
d) None of these
14. If two events A and B are such that $P\left(A^{c}\right)=0.3, P(B)=0.4$ and $P\left(A \cap B^{c}\right)=0.5$, then $P\left[\frac{B}{\left(A \cup B^{c}\right)}\right]$ is equal to
a) $\frac{1}{2}$
b) $\frac{1}{3}$
C) $\frac{1}{4}$
d) None of these
15. A and B play a game where each is asked to select a number from 1 to 25 . If the two numbers match, both of them win a prize. The probability that they will not win a prize in a single trial, is
a) $\frac{1}{25}$
b) $\frac{24}{25}$
c) $\frac{2}{25}$
d) None of these
16. A box contains 100 bulbs out of which 10 are defective. A sample of 5 bulbs is drawn. The probability that none is defective, is
a) $\left(\frac{1}{10}\right)^{5}$
b) $\left(\frac{1}{2}\right)^{5}$
c) $\left(\frac{9}{10}\right)^{5}$
d) $\frac{9}{10}$
17. A random variable X can attain only the value $1,2,3,4,5$ with respective probabilities $k, 2 k, 3 k, 2 k, k$. If m is the mean of the probability distribution, then (k, m) is equal to
a) $\left(3, \frac{1}{9}\right)$
b) $\left(\frac{1}{9}, 3\right)$
c) $\left(\frac{1}{8}, 4\right)$
d) $(1,3)$
18. A complete cycle of a traffic light takes 60 s . During each cycle the light is green for 25 s , yellow for 5 s and red for 30 s . At a randomly chosen time, the probability that the light will not be green, is
a) $\frac{1}{3}$
b) $\frac{1}{4}$
c) $\frac{4}{17}$
d) $\frac{7}{12}$
19. From a group of 8 boys and 3 girls, a committee of 5 members to be formed. Find the probability that 2 particular girls are included in the committee
a) $\frac{4}{11}$
b) $\frac{2}{11}$
c) $\frac{6}{11}$
d) $\frac{8}{11}$
20. There are n letters and n addressed envelopes, the probability that all the letters are not kept in the right envelope, is
a) $\frac{1}{n!}$
b) $1-\frac{1}{n!}$
c) $1-\frac{1}{n}$
d) n !

