

CLASS : XIth DATE : **SUBJECT : MATHS DPP NO. :3**

Topic :-probability

- If A and B are two independent events, then the probability that only one of A and B occur is
 a) P(A) +P(B) -2 P (A ∩ B)
 b) P(A) +P(B) -P(A ∩ B)
 c) P(A) +P(B)
 d) None of these
- 2. Let 0 < P(A) < 1, 0 < P(B) < 1 and $P(A \cap B) = P(A) + P(B) P(A)P(B)$, then a) $P(B \mid A) = P(B) - P(A)$ b) $P(A^c \cup B^c) = P(A^c) + P(B^c)$ c) $P(A \cup B)^c = P(A^c)P(B^c)$ d) $P(A \mid B) = P(A) + P(B^c)$
- 3. The probability distribution of a random variable X is given as X-5-4-3-2-1012345 P(X)p2p3p4p5p7p8p9p10p11p12pThen, the value of P is a) $\frac{1}{72}$ b) $\frac{3}{73}$ c) $\frac{5}{72}$
 - d) $\frac{1}{74}$

4. In a college 25% boys and 10% girls offer Mathematics. There are 60% girls in the college. If a Mathematics student is chosen at random, then the probability that the student is a girl, will be

a) $\frac{1}{6}$	b) $\frac{3}{8}$	c) $\frac{5}{8}$	d) $\frac{5}{6}$
------------------	------------------	------------------	------------------

5. A biased coin with probability p, 0 of heads is tossed until a head appears for the first time. If the probability that the number of tossed required is even is

$\frac{2}{5}$, then <i>p</i> equals			
a) $\frac{1}{3}$	b) $\frac{2}{3}$	c) $\frac{2}{5}$	d) $\frac{3}{5}$

6. For any two independent events E_1 and E_2 , $P\{(E_1 \cup E_2) \cap (\overline{E}_1) \cap (\overline{E}_2)\}$ is a) $\leq 1/4$ b) > 1/4 c) $\geq 1/2$ d) None of these

7.	A and B are the independent events. The probability that both occur simultaneously is $\frac{1}{6}$ and the							
probability that neither occur is $\frac{1}{2}$. The probability of occurrence of the events A and B is								
	a) $\frac{1}{2'2}$	b) $\frac{1}{2'3}$	c) Not possible	d)None of these				
8. gett	8. If in a distribution each x is replaced by corresponding value of $f(x)$, then the probability of getting $f(x_i)$ when the probability of getting x_i is p_i , is							
	a) <i>p</i> _i	b) $f(p_i)$	c) $f\left(\frac{1}{p_i}\right)$	d) None of these				
9.	9. The distribution of a random variable <i>X</i> is given below $X - 2 - 10123$							
P (The	$(X)\frac{1}{10}$ k $\frac{1}{5}$ e value of k is	$2k \frac{3}{10} k$						
2	a) $\frac{1}{10}$	b) $\frac{2}{10}$	c) $\frac{3}{10}$	d) $\frac{7}{10}$				
10. hit	10. The probability that a man can hit a target is $3/4$. He tries 5 times. The probability that he will hit the target at least three times is							
	a) 291/364	b)371/464	c) 471/502	d)459/512				
11. Two cards are drawn from a well shuffled deck of 52 cards. The probability that one is red card								
a) 4/51	b)16/221	c) 50/663	d) None of these					
12.	If $4P(A) = 6P(B) = 10$.	$P(A \cap B) = 1$, then $P\left(\frac{B}{A}\right)$ is	is equal to					
	a) $\frac{2}{5}$	b) $\frac{3}{5}$	c) $\frac{7}{10}$	d) $\frac{19}{60}$				
13.	In a binomial distributi a) 5	on, t <mark>he m</mark> ean is 4 and va	iriance is 3. Then, its mo c) 4	de is d)None of these				
14. If two events A and B are such that $P(A^c) = 0.3$, $P(B) = 0.4$ and $P(A \cap B^c) = 0.5$, then $P[B^c]$								
is equal to								
	a) $\frac{1}{2}$	b) $\frac{1}{3}$	c) $\frac{1}{4}$	d)None of these				
15. <i>A</i> and <i>B</i> play a game where each is asked to select a number from 1 to25. If the two numbers match, both of them win a prize. The probability that they will not win a prize in a single trial. is								
	a) $\frac{1}{25}$	b) $\frac{24}{25}$	c) $\frac{2}{25}$	d)None of these				
16. A box contains 100 bulbs out of which 10 are defective. A sample of 5 bulbs is drawn. The probability that none is defective, is								
P. 0	a) $\left(\frac{1}{10}\right)^5$	b) $\left(\frac{1}{2}\right)^5$	c) $\left(\frac{9}{10}\right)^5$	d) $\frac{9}{10}$				

17. A random variable *X* can attain only the value 1, 2, 3, 4, 5 with respective probabilities *k*,2*k*,3*k*,2*k*,*k*. If *m* is the mean of the probability distribution, then(*k*,*m*)is equal to a) $(3, \frac{1}{9})$ b) $(\frac{1}{9}, 3)$ c) $(\frac{1}{8}, 4)$ d) (1, 3)

18. A complete cycle of a traffic light takes 60 s. During each cycle the light is green for 25 s, yellow for 5 s and red for 30 s. At a randomly chosen time, the probability that the light will not be green, is

a)
$$\frac{1}{3}$$
 b) $\frac{1}{4}$ c) $\frac{4}{17}$ d) $\frac{7}{12}$

19. From a group of 8 boys and 3 girls, a committee of 5 members to be formed. Find the probability that 2 particular girls are included in the committee

a)
$$\frac{4}{11}$$
 b) $\frac{2}{11}$ c) $\frac{6}{11}$ d) $\frac{8}{11}$

20. There are *n* letters and *n* addressed envelopes, the probability that all the letters are not kept in the right envelope, is

b)
$$1 - \frac{1}{n!}$$
 c) $1 - \frac{1}{n}$ d) $n!$

a) $\frac{1}{n!}$