CLASS : XIth
SUBJECT : MATHS
DATE :

Topic :-PRobablaty

1. A and B are two independent events such that $P\left(A \cup B^{\prime}\right)=0.8$ and $P(A)=0.3$. Then, $P(B)$ is
a) $\frac{2}{7}$
b) $\frac{2}{3}$
C) $\frac{3}{8}$
d) $\frac{1}{8}$
2. Suppose that a die (with faces marked 1 to 6) is loaded in such a manner that for $K=1,2,3, \ldots ., 6$ the probability of the face marked K turning up when die is tossed is proportional to K. The probability of the event that the outcome of a toss of the die will be an even number, is equal to
a) $\frac{1}{2}$
b) $\frac{4}{7}$
c) $\frac{2}{5}$
d) $\frac{1}{21}$
3. Three are six verities of a regular hexagon are chosen at random, then the possibility that the triangle with three vertices is equilateral, is equal to
a) $\frac{1}{2}$
b) $\frac{1}{3}$
c) $\frac{1}{10}$
d) $\frac{1}{20}$
4. If a committee of 3 is to be chosen from a group of 38 people of which you are a member. What is the probability that you will be on the committee?
a) $\binom{38}{3}$
b) $\binom{37}{2}$
c) $\binom{37}{2} /\binom{38}{3}$
d) $666 / 8436$
5. The probability that in a year of the 22 nd century chosen at random there will be 53 Sundays, is
a) $\frac{3}{28}$
b) $\frac{2}{28}$
c) $\frac{7}{28}$
d) $\frac{5}{28}$
6. Two cards are drawn without replacement from a well-shuffled pack. The probability that one of them is an ace of heart, is
a) $\frac{1}{25}$
b) $\frac{1}{26}$
c) $\frac{1}{52}$
d) None of these
7. A binary operation is chosen at random from the set of all binary operations on a set A containing n elements. The probability that the binary operation is commutative, is
a) $\frac{n^{n}}{n^{n^{2}}}$
b) $\frac{n^{n / 2}}{n^{n^{2}}}$
c) $\frac{n^{n / 2}}{n^{n^{2} / 2}}$
d) None of these
8. A lot consists of 102 good pencils, 6 with minor defects and 2 with major defects. A pencil is choosen at random. The probability that this pencil is not defective is
a) $3 / 5$
b) $3 / 10$
c) $4 / 5$
d) $1 / 2$
9. If A and B are events of the same experiments with $P(A)=0.2, P(B)=0.5$, then maximum value of $P\left(A^{\prime} \cap B\right)$ is
a) 0.2
b) 0.5
c) 0.63
d) 0.25
10. Four tickets marked $00,01,10,11$, respectively are placed in a bag. A ticket is drawn at random five times, being replaced each time. The probability that the sum of the numbers on tickets thus drawn is 23 , is
a) $25 / 256$
b) $100 / 256$
c) $231 / 256$
d) None of these
11. Two dice are tossed 6 times. Then the probability that 7 will show an exactly four of the tosses is
a) $\frac{225}{18442}$
b) $\frac{116}{20003}$
C) $\frac{125}{15552}$
d) None of these
12. Out of $3 n$ consecutive natural numbers, 3 natural numbers are chosen at random without replacement. The probability that the sum of the chosen numbers is divisible by 3 , is
a) $\frac{n\left(3 n^{2}-3 n+2\right)}{2}$
b) $\frac{\left(3 n^{2}-3 n+2\right)}{2(3 n-1)(3 n-2)}$
c) $\frac{\left(3 n^{2}-3 n+2\right)}{(3 n-1)(3 n-2)}$
d) $\frac{n(3 n-1)(3 n-2)}{3(n-1)}$
13. A and B are two independent witnesses (ie, there is no collusion between them) in a case. The probability that A will speak the truth is x and the probability that B will speak the truth is y, A and B agree in a certain statement. The probability that the statement is true, is
a) $\frac{x-y}{x+y}$
b) $\frac{x y}{1+x+y+x y}$
c) $\frac{x-y}{1-x-y+2 x y}$
d) $\frac{x y}{1-x-y+2 x y}$
14. Five persons A, B, C, D and E are in queue of a shop. The probability that A and E always together, is
a) $\frac{1}{4}$
b) $\frac{2}{3}$
c) $\frac{2}{5}$
d) $\frac{3}{5}$
15. Three dice are thrown. The probability that the same number will appear on each of them, is
a) $1 / 6$
b) $1 / 18$
c) $1 / 36$
d) None of these
16. A bag contains 8 red and 7 black balls. Two balls are drawn at random. The probability that both the balls are of the same colour, is
a) $\frac{14}{15}$
b) $\frac{11}{15}$
c) $\frac{7}{15}$
d) $\frac{4}{15}$
17. A bag contains 10 white and 3 black balls. Balls are drawn one-by-one without replacement till all the black balls are drawn. The probability that the procedure of drawing balls will come to an end at the seventh draw is
a) $\frac{105}{286}$
b) $\frac{15}{286}$
c) $\frac{181}{286}$
d) None of these
18. Two events A and B have probability 0.25 and 0.50 respectively. The probability that both A and B occur simultaneously is 0.14 . Then, the probability that neither A nor B occur, is
a) 0.39
b) 0.25
c) 0.11
d) None of these
19. There are 9999 tickets bearing numbers $0001,0002, \ldots ., 9999$. If one ticket is selected from these tickets at random, the probability that the number on the ticket will consists of all different digits, is
a) $\frac{5040}{9999}$
b) $\frac{5000}{9999}$
c) $\frac{5030}{9999}$
d) None of these
20. The probability of choosing randomly a number c from the set $\{1,2,3, \ldots . ., 9\}$ such that the quadratic equation $x^{2}+4 x+c=0$ has real roots is
a) $\frac{1}{9}$
b) $\frac{2}{9}$
c) $\frac{3}{9}$
d) $\frac{4}{9}$
