CLASS : XIth
DATE :

1
(c)

Given, $P(\bar{A} \cup \bar{B})=P(\overline{A \cap B})=\frac{7}{10}$
Since, $P(A \cap B)+P(\overline{A \cap B})=1$
$\Rightarrow P(A \cap B)=1-\frac{7}{10}=\frac{3}{10}$
Also, $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$\Rightarrow \frac{4}{5}=P(A)+\frac{2}{5}-\frac{3}{10}$
$\Rightarrow P(A)=\frac{4}{5}-\frac{2}{5}+\frac{3}{10}$
$=\frac{2}{3}+\frac{3}{10}=\frac{7}{10}$
2
(c)

Probability of getting an ace
$P\left(E_{1}\right)=\frac{4}{52}=\frac{1}{13}, P\left(\frac{E_{2}}{E_{1}}\right)=\frac{15}{51}=\frac{5}{17}$
$P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) \cdot P\left(\frac{E_{2}}{E_{1}}\right)$
$=\frac{1}{13} \cdot \frac{5}{17}=\frac{5}{221}$
3
(b)

4 five-rupee, 3 two-rupee and 2 one-rupee coins can be stacked together in a column in $\frac{9!}{4!3!2!}$ ways
The number of ways in which coins of the same denomination the consecutive is same as the number of ways of arranging 3 distinct items i.e. 3! Ways
Hence, required probability $=\frac{3!}{\frac{3!}{4!3!2!}}=\frac{1}{210}$
4
(b)

The total number of ways of selecting two squares is $64 \times 63$
For each of the four corner squares, the favourable number of way is 2
For each of the 24 non-corner squares on either side of chess board, the favourable number of cases is 3
For each of the 36 remaining squares, the favourable, number of ways is 4
Thus, the total number of favourable ways
$=4 \times 2+24 \times 3+36 \times 4=224$
Hence, required probability $=\frac{224}{64 \times 63}=\frac{1}{18}$
5
(b)

We define the following events:
$A_{1}$ :He knows the answer;
$A_{2}$ :He does not know the answer;
$E:$ He gets the correct answer
Then, $P\left(A_{1}\right)=\frac{9}{10} P\left(A_{2}\right)=1=\frac{9}{10}=\frac{1}{10}$,
$P\left(E \mid A_{1}\right)=1, P\left(\left.E\right|_{A_{2}}\right)=\frac{1}{4}$
$\therefore$ Required probability $=P\left(A_{2} \mid E\right)$
$=\frac{P\left(A_{2}\right) P\left(E / A_{2}\right)}{P\left(A_{1}\right) P\left(E \mid A_{1}\right)+P\left(A_{2}\right) P\left(E \mid A_{2}\right)}=\frac{\frac{1}{10} \cdot \frac{1}{4}}{\frac{9}{10} \cdot 1+\frac{1}{10} \cdot \frac{1}{4}}=\frac{1}{37}$
6 (d)
$P\left(A \cap B^{\prime}\right)=P(A)-P(A \cap B)$
$7 \quad$ (d)
Let $A=$ Event of getting $i$ on first dice
and $B=$ Event of getting more than $i$ on second dice
$\therefore$ Required probability $=\sum_{i=1}^{5} P\left(A_{i} \cap B_{1}\right)$
$=\frac{1}{6}\left[P\left(B_{1}\right)+P\left(B_{2}\right)+P\left(B_{3}\right)+P\left(B_{4}\right)+P\left(B_{5}\right)\right]$
$=\frac{1}{6}\left[\frac{5}{6}+\frac{4}{6}+\frac{3}{6}+\frac{2}{6}+\frac{1}{6}\right]$
$=\frac{15}{36}=\frac{5}{12}$

The event that the fifth toss results in a head is independent of the event that the first four tosses result in tails.
$\therefore$ Probability of the required event $=\frac{1}{2}$
$9 \quad$ (a)
Let $A_{1}$ denote the event that a coin having heads on both sides is chosen, and $A_{2}$ denote the event that a fair coin is chosen. Let E denote the event that head occurs. Then
$P\left(A_{1}\right)=\frac{n}{2 n+1}, P\left(A_{2}\right)=\frac{n+1}{2 n+1}, P\left(E / A_{1}\right)=1, P\left(E / A_{2}\right)=\frac{1}{2}$
Now, $P(E)=P\left(A_{1} \cap E\right)+P\left(A_{2} \cap E\right)$
$\Rightarrow P(E)=P\left(A_{1}\right) P\left(E / A_{1}\right)+P\left(A_{2}\right) P\left(E / A_{2}\right)$
$\Rightarrow \frac{31}{42}=\frac{n}{2 n+1} \times 1+\frac{n+1}{2 n+1} \times \frac{1}{2}$
$\Rightarrow \frac{31}{42}=\frac{3 n+1}{2(2 n+1)}$
$\Rightarrow 124 n+62=126 n+42$
$\Rightarrow 2 n=20 \Rightarrow n=10$
10
(d)

In binomial distribution, mean $=n p=10$, variance $=n p q=5$
$\therefore p=q=\frac{1}{2}$
Let $x$ be the mode, then
$n p+p<x>n p-q$
$\therefore 10+\frac{1}{2}>x>10-\frac{1}{2}$
$\Rightarrow \frac{21}{2}>x>\frac{19}{2} \Rightarrow 9.5<x<10.5$
$\therefore x=10$

11
(b)

Mean $=n p=4$, variance $=n q p=3$

On solving, we get $q=\frac{3}{4}, n=16, p=\frac{1}{4}$
Now, $P(X \geq 1)=1-P(X=0)=1-{ }^{n} C_{0} p^{0} q^{n-0}$
$=1-\left(\frac{3}{4}\right)^{16}$

12
(c)

Probability of defective transistor $=\frac{5}{15}=\frac{1}{3}$ and probability of non-defective transistor $=1-\frac{1}{3}=\frac{2}{3}$
Probability that the inspectors finds non-defective transistors
$=\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}=\frac{8}{27}$
Hence, probability that atleast one of the inspectors finds a defective transistor
$=1-\frac{8}{27}=\frac{19}{27}$
13
(b)

The probability of suffering of a disease is $10 \%$
$p=\frac{10}{100}=\frac{1}{10}$ and $q=\frac{9}{10}$
Total number of patients, $n=6$
$\therefore$ Required probability
$={ }^{6} C_{3}\left(\frac{1}{10}\right)^{3}\left(\frac{9}{10}\right)^{3}$
$=\frac{6.5 .4}{3.2 .1} \times \frac{1}{1000} \times \frac{9 \times 9 \times 9}{1000}$
$=\frac{2}{10^{5}} \times 729=1458 \times 10^{-5}$
14
(c)
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$\therefore 0.6=P(A)+P(B)-0.2$
$\Rightarrow P(A)+P(B)=0.8$
$\Rightarrow P(\bar{A})+P(\bar{B})=12[\because P(A)=1-P(\bar{A})]$
15 (c)
$n(S)=36$
Let $E=$ Event of getting sum 7
$=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$
$\therefore n(E)=6$
$E=$ Event of getting sum 11
$=\{(6,5),(5,6)\}$
$\therefore n(F)=2$
Also $n(E \cap F)=0$
$\therefore n(E \cup F)=n(E)+n(F)-n(E \cap F)$
$=6+2=8$
$\therefore$ Required probability $=\frac{8}{36}=\frac{2}{9}$

## 16 <br> (a)

Since the graph of $y=16 x^{2}+8(a+5) x-7 a-5$ is strictly above $x$-axis. Therefore, $y>0$ for all $x$
$\Rightarrow 16 x^{2}+8(a+5) x-7 a-5>0$ for all $x$
$\Rightarrow 64(a+5)^{2}+64(7 a+5)<0 \quad[\because$ Disc $<0]$
$\Rightarrow a^{2}+17 a+30<0$
$\Rightarrow-15<a<-2$
$\therefore$ Required probability $=\frac{\int_{-15}^{-2} d x}{\int_{-20}^{0} d x}=\frac{13}{20}$
17
(c)

Duplicate $=5$, original $=10$
Taking 3 times.
The probability that none of the items is duplicate $i e$, all the three are original
$=\frac{{ }^{10} C_{3}}{{ }^{15} C_{3}}=\frac{24}{91}$
18
(b)

The probability that only two tests are needed = (probability that the first tested machine is faulty)
$\times$ (probability that the second tested machine is faulty given the first machine tested is faulty) $=\frac{2}{4}$ $\times \frac{1}{3}=\frac{1}{6}$.
19
(c)

Five tickets out of 50 can be drawn in ${ }^{50} C_{5}$ ways. Since $x_{1}<x_{2}<x_{3}<x_{4}<x_{5}$ and $x_{3}=30$.
Therefore, $x_{1}, x_{2}<30$ i.e. $x_{1}$ and $x_{2}$ should come from tickets numbered 1 to 29 and this may happen in ${ }^{29} C_{2}$ ways. Remaining two i.e. $x_{4}, x_{5}<30$, should come from 20 tickets numbered 31 to 50 in ${ }^{29}$ $C_{2}$ ways.
So, favourable number of elementary events $={ }^{29} C_{2} \times{ }^{20} C_{2}$
Hence, required probability $=\frac{{ }^{29} C_{2} \times{ }^{20} C_{2}}{{ }^{50} C_{5}}$
20
(a)

Probability of no tail in four throws $=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{16}$
Probability of atleast one tail $=1-\frac{1}{16}=\frac{15}{16}$

| ANSWER-KEY |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | C | C | B | B | B | D | D | A | A | D |
|  |  |  |  |  |  |  |  |  |  |  |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | B | C | B | C | C | A | C | B | C | A |
|  |  |  |  |  |  |  |  |  |  |  |

