

$$= \frac{1}{13} \cdot \frac{5}{17} = \frac{5}{221}$$

3 **(b)**

4 five-rupee, 3 two-rupee and 2 one-rupee coins can be stacked together in a column in $\frac{9!}{4!3!2!}$ ways The number of ways in which coins of the same denomination the consecutive is same as the number of ways of arranging 3 distinct items i.e. 3! Ways

Hence, required probability $=\frac{3!}{\frac{9!}{4!3!2!}}=\frac{1}{210}$ 4 **(b)** The total number of ways of selecting two squares is 64×63

For each of the four corner squares, the favourable number of way is 2

For each of the 24 non-corner squares on either side of chess board, the favourable number of cases is 3

For each of the 36 remaining squares, the favourable, number of ways is 4

Thus, the total number of favourable ways

 $= 4 \times 2 + 24 \times 3 + 36 \times 4 = 224$

Hence, required probability $=\frac{224}{64 \times 63}=\frac{1}{18}$

We define the following events:

 A_1 :He knows the answer;

 A_2 :He does not know the answer;

E:He gets the correct answer

Then,
$$P(A_1) = \frac{9}{10}, P(A_2) = 1 = \frac{9}{10} = \frac{1}{10},$$

 $P(E \mid A_1) = 1, P(E \mid A_2) = \frac{1}{4}$
 \therefore Required probability $= P(A_2 \mid E)$
 $= \frac{P(A_2)P(E/A_2)}{P(E \mid A_2) = P(E \mid A_2)} = \frac{\frac{1}{10} \cdot \frac{1}{4}}{\frac{1}{10} \cdot \frac{1}{4}} = \frac{1}{10}$

$$= \frac{10^{-4}}{P(A_1)P(E|A_1) + P(A_2)P(E|A_2)} = \frac{10^{-4}}{\frac{9}{10} \cdot 1 + \frac{1}{10} \cdot \frac{1}{4}} = \frac{1}{37}$$

6 (d)

$$P(A \cap B') = P(A) - P(A \cap B)$$

7 (d)
Let A = Event of getting i on first dice

and B = Event of getting more than *i* on second dice

$$\therefore$$
 Required probability $= \sum_{i=1}^{5} P(A_i \cap B_1)$

$$= \frac{1}{6} [P(B_1) + P(B_2) + P(B_3) + P(B_4) + P(B_5)]$$

$$= \frac{1}{6} [\frac{5}{6} + \frac{4}{6} + \frac{3}{6} + \frac{2}{6} + \frac{1}{6}]$$

$$= \frac{15}{36} = \frac{5}{12}$$

8 (a)

The event that the fifth toss results in a head is independent of the event that the first four tosses result in tails.

 \therefore Probability of the required event $=\frac{1}{2}$

Let A_1 denote the event that a coin having heads on both sides is chosen, and A_2 denote the event that a fair coin is chosen. Let E denote the event that head occurs. Then

$$P(A_{1}) = \frac{n}{2n+1}, P(A_{2}) = \frac{n+1}{2n+1}, P(E/A_{1}) = 1, P(E/A_{2}) = \frac{1}{2}$$
Now, $P(E) = P(A_{1} \cap E) + P(A_{2} \cap E)$

$$\Rightarrow P(E) = P(A_{1})P(E/A_{1}) + P(A_{2})P(E/A_{2})$$

$$\Rightarrow \frac{31}{42} = \frac{n}{2n+1} \times 1 + \frac{n+1}{2n+1} \times \frac{1}{2}$$

$$\Rightarrow \frac{31}{42} = \frac{3n+1}{2(2n+1)}$$

$$\Rightarrow 124n + 62 = 126n + 42$$

$$\Rightarrow 2n = 20 \Rightarrow n = 10$$
10 (d)
In binomial distribution, mean = $np = 10$, variance = $npq = 5$

$$\therefore p = q = \frac{1}{2}$$

Let *x* be the mode, then

np + p < x > np - q

 $\therefore 10 + \frac{1}{2} > x > 10 - \frac{1}{2}$

$$\Rightarrow \frac{21}{2} > x > \frac{19}{2} \Rightarrow 9.5 < x < 10.5$$

$$\therefore x = 10$$

11 **(b)** Mean = np = 4, variance = nqp = 3

On solving, we get $q = \frac{3}{4}$, n = 16, $p = \frac{1}{4}$

Now, $P(X \ge 1) = 1 - P(X = 0) = 1 - {^nC_0}p^0q^{n-0}$

$$=1-\left(\!\frac{3}{4}\!\right)^{\!16}$$

12 (c)

Probability of defective transistor $=\frac{5}{15}=\frac{1}{3}$ and probability of non-defective transistor $=1-\frac{1}{3}=\frac{2}{3}$ Probability that the inspectors finds non-defective transistors

 $=\frac{2}{3}\times\frac{2}{3}\times\frac{2}{3}=\frac{8}{27}$

Hence, probability that atleast one of the inspectors finds a defective transistor

$$= 1 - \frac{8}{27} = \frac{19}{27}$$

13 **(b)**

The probability of suffering of a disease is 10%

$$p = \frac{10}{100} = \frac{1}{10}$$
 and $q = \frac{9}{10}$

Total number of patients, n = 6

∴ Required probability

$$= {}^{6}C_{3} \left(\frac{1}{10}\right)^{3} \left(\frac{9}{10}\right)^{3}$$

$$= \frac{6.5.4}{3.2.1} \times \frac{1}{1000} \times \frac{9 \times 9 \times 9}{1000}$$

$$= \frac{2}{10^{5}} \times 729 = 1458 \times 10^{-5}$$
14 (c)
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $\therefore 0.6 = P(A) + P(B) - 0.2$
 $\Rightarrow P(A) + P(B) = 0.8$
 $\Rightarrow P(\overline{A}) + P(\overline{B}) = 12 [\because P(A) = 1 - P(\overline{A})]$
15 (c)
 $n(S) = 36$
Let E = Event of getting sum 7
 $= \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$
 $\therefore n(E) = 6$
 E = Event of getting sum 11
 $= \{(6,5), (5,6)\}$
 $\therefore n(F) = 2$
Also $n(E \cap F) = 0$

$$\therefore n(E \cup F) = n(E) + n(F) - n(E \cap F)$$

$$= 6 + 2 = 8$$

: Required probability $=\frac{8}{36}=\frac{2}{9}$

16 **(a)**

Since the graph of $y = 16 x^2 + 8(a + 5)x - 7 a - 5$ is strictly above x-axis. Therefore, y > 0 for all x $\Rightarrow 16 x^2 + 8(a + 5)x - 7 a - 5 > 0$ for all x $\Rightarrow 64(a + 5)^2 + 64(7 a + 5) < 0$ [: Disc < 0] $\Rightarrow a^2 + 17 a + 30 < 0$ $\Rightarrow -15 < a < -2$ \therefore Required probability $= \frac{\int_{-15}^{-2} dx}{\int_{-20}^{0} dx} = \frac{13}{20}$

17 **(c)**

Duplicate =5, original =10

Taking 3 times.

The probability that none of the items is duplicate *ie*, all the three are original

$$=\frac{{}^{10}C_3}{{}^{15}C_3}=\frac{24}{91}$$

18 **(b)**

The probability that only two tests are needed = (probability that the first tested machine is faulty)

× (probability that the second tested machine is faulty given the first machine tested is faulty) = $\frac{2}{4}$ × $\frac{1}{3} = \frac{1}{6}$.

19 **(c)**

Five tickets out of 50 can be drawn in ${}^{50}C_5$ ways. Since $x_1 < x_2 < x_3 < x_4 < x_5$ and $x_3 = 30$. Therefore, $x_1, x_2 < 30$ i.e. x_1 and x_2 should come from tickets numbered 1 to 29 and this may happen in ${}^{29}C_2$ ways. Remaining two i.e. $x_4, x_5 < 30$, should come from 20 tickets numbered 31 to 50 in ${}^{29}C_2$ ways.

So, favourable number of elementary events = ${}^{29}C_2 \times {}^{20}C_2$ Hence, required probability = $\frac{{}^{29}C_2 \times {}^{20}C_2}{{}^{50}C_5}$

Probability of no tail in four throws $=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{16}$ Probability of atleast one tail $=1 - \frac{1}{16} = \frac{15}{16}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	C	C	В	В	В	D	D	А	А	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	C	В	С	С	А	С	В	С	А

