CLASS : XIth

Topic :-PROBABILITY

1
(a)

Given, one integer is chosen at random from the first 200 positive integers and integer chosen is divisible by 6 or 8 .
\therefore One integer can be chosen out of 200 integers in ${ }^{200} C_{1}$ ways.
Let A be the event that an integer selected is divisible by 6 and B that it is divisible by 8 .
Then, $P(A)=\frac{33}{200}, P(B)=\frac{25}{200}$
and $P(A \cap B)=\frac{8}{200}$
$\therefore P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$=\frac{33}{200}+\frac{25}{200}-\frac{8}{200}=\frac{1}{4}$
2
(c)

Given that, $E(X)=3$ and $E\left(X^{2}\right)=11$
Variance of $X=E\left(X^{2}\right)-[E(X)]^{2}$
$=11-(3)^{2}=11-9=2$
3
(b)

Let X be the number of heads getting in n tossed. Therefore, X follows binomial distribution with parameters
$n, P=\frac{1}{2}, q=\frac{1}{2}$
Since, $P(X \geq 1) \geq 0.8$ [given]
$\therefore 1-P(X=0) \geq 0.8$
$\Rightarrow P(X=0) \leq 0.2$
$\Rightarrow{ }^{n} C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{n} \leq 0.2$
$\Rightarrow \frac{1}{2^{n}} \leq \frac{1}{5} \Rightarrow 2^{n} \geq 5$

Hence, least value of n is 3
4
(c)

Total number of digits in any number at the unit place is 10 .
$\therefore n(S)=10$
To get the last digit in product is $1,3,5$ or 7 , it is necessary the last digit in each number must be 1 , 3,5 or 7.
$n(A)=4$,
$\therefore P(A)=\frac{4}{10}=\frac{2}{5}$
Hence, required probability $=\left(\frac{2}{5}\right)^{4}=\frac{16}{625}$
5 (a)
Since, events are independent, so
$P\left(A \cap B^{\prime}\right)=P(A) \times P\left(B^{\prime}\right)=\frac{3}{25}$
$\Rightarrow P(A) \times\left[(1-P(B)]=\frac{3}{25}\right.$
Similarly, $P(B) \times[1-P(A)]=\frac{8}{25} \ldots(\mathrm{ii})$
\therefore From Eqs.(i) and (ii), $P(A)=\frac{1}{5}$
6
(a)

We have,
$x^{2}-3 x+2 \geq 0 \Rightarrow(x-1)(x-2) \geq 0 \Rightarrow x<1$ or $x>2$
\therefore Required probability $=\frac{\int_{0}^{1} d x+\int_{2}^{5} d x}{\int_{0}^{5} d x}=\frac{4}{5}$

7 (d)

$P($ At least on head $)=1-P($ zero head $)$
$=1-P$ (all three tails)
$=1-\frac{1}{8}=\frac{7}{8}$
8
(b)

For binomial distribution
$0<$ variance $<$ mean
$\Rightarrow 0<\beta<\alpha$

9
(c)

Given, $x^{2}-n=0$
$\Rightarrow x= \pm \sqrt{n}$
$\therefore n=1,4,9,16,25,36$
\therefore Required probability $=\frac{6}{40}=\frac{3}{20}$

10 (b)

In a pack of 52 cards, there are 26 black cards.
\therefore Required probability $=\frac{{ }^{26} C_{3}}{{ }^{52} C_{3}}$
$=\frac{26 \times 25 \times 24}{3 \times 2 \times 1} \times \frac{3 \times 2 \times 1}{52 \times 51 \times 50}$
$=\frac{2}{17}$

11
(d)

We have,
Total number of elementary events $=6^{3}=216$
Exactly two of three dice will show the same number in
${ }^{6} C_{1} \times{ }^{5} C_{1} \times \frac{3!}{2!}$ ways
\therefore Favourable number of elementary events
$={ }^{6} C_{1} \times{ }^{5} C_{1} \times \frac{3!}{2!}=90$
Hence, required probability $=\frac{90}{216}$
12 (c)
Since, $P(B)=\frac{2}{7}$ and $P\left(A \cup B^{c}\right)=0.8$
$P\left(B^{c}\right)=1-\frac{2}{7}=\frac{5}{7}$

Using, $P\left(A \cup B^{c}\right)=P(A)+P\left(B^{c}\right)-P(A) \cdot P\left(B^{c}\right)$
$\Rightarrow 0.8=P(A)+\frac{5}{7}-\frac{5}{7} P(A)$
$\Rightarrow 0.8=\frac{5}{7}+\frac{2}{7} P(A)$
$\Rightarrow P(A)=0.3$
13 (d)
Clearly, $P(A \cup B \cup C)=1$
$\Rightarrow P(A)+P(B)+P(C)=1$
$\Rightarrow P(A)+\frac{1}{2} P(A)+\frac{1}{3} P(A)=1$
$\Rightarrow \frac{11}{6} P(A)=1$
$\Rightarrow P(A)=\frac{6}{11}$
(d)
$P(X=0)=k, P(X=1) 2 k\left(\frac{1}{5}\right)^{1}$
$P(X=2)=3 k\left(\frac{1}{5}\right)^{2}, \ldots$
Since, $P(X=0)+P(X=1)+P(X=2)+\ldots=1$
$\therefore k+2 k\left(\frac{1}{5}\right)+3 k\left(\frac{1}{5}\right)^{2}+\ldots=1$
and $+\frac{k}{5}+2 k\left(\frac{1}{5}\right)^{2}+\ldots=\frac{1}{5}$
$k+k\left(\frac{1}{5}\right)+k\left(\frac{1}{5}\right)^{2}+\ldots=\frac{4}{5}$
$\Rightarrow \frac{k}{1-\frac{1}{5}}=\frac{4}{5}$
$\Rightarrow k=\frac{16}{25}$

$\therefore P(X=0)=\frac{16}{25}(0+1)\left(\frac{1}{5}\right)^{0}=\frac{16}{25}$
15
(c)

Given, $P(\bar{B})=\frac{1}{3} \Rightarrow P(B)=\frac{2}{3}$,
$P(A \cup B)=\frac{5}{6}, P(A \cap B)=\frac{1}{3}$
Now, $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$\Rightarrow \frac{5}{6}=P(A)+\frac{2}{3}-\frac{1}{3}$
$\Rightarrow P(A)=\frac{5}{6}-\frac{2}{3}+\frac{1}{3}=\frac{1}{2}$
16
(c)

We have,

Total number of ways of selecting 4 tickets $=3^{4}=81$
Favourable number of ways
$=$ Sum of the coefficients of x^{2}, x^{4}, \ldots in $\left(x+x^{2}+x^{3}\right)^{4}$
$=$ Sum of the coefficients of x^{2}, x^{4}, \ldots in $x^{4}\left(1+x+x^{2}\right)^{4}$
Let $\left(1+x+x^{2}\right)^{4}=1+a_{1} x+a_{2} x^{2}+\ldots+a_{8} x^{8}$
Putting $x=1$ and $x=-1$ respectively, we get
$3^{4}=1+a_{1}+a_{2}+a_{3}+\ldots+a_{8}$
and, $1=1-a_{1}+a_{2}-a_{3}+\ldots+a_{8}$
$\therefore 3^{4}+1=2\left(1+a_{2}+a_{4}+a_{6}+a_{8}\right)$
$\Rightarrow a_{2}+a_{4}+a_{6}+a_{8}=40$
Thus, the sum of the coefficients of $x^{2}, x^{4}, \ldots=40$
Hence, required probability $=\frac{40}{81}$
17 (c)
Probability of getting a white ball at any draw is, p
$=\frac{12}{24}=\frac{1}{2}$.
The probability of getting a white ball 4th in the 7th draw
$=P$ (getting 3 white balls in 6 draws) $\times P$ (white ball at the 7 th draw)
$={ }^{6} C_{3}\left(\frac{1}{2}\right)^{6} \cdot \frac{1}{2}=\frac{20}{2^{7}}=\frac{5}{32}$
18
(c)

Total number of persons $=15$
and number of persons who can speak Hindi and English both
$=10+8-15=3$
\therefore Required probability $=\frac{{ }^{7} C_{1} \times{ }^{3} C_{1}}{{ }^{15} C_{2}}=\frac{7 \times 3}{\frac{1514}{2}}=\frac{1}{5}$
19 (b)
Required probability $=\frac{1}{2}\left(\frac{{ }^{3} C_{1}}{{ }^{7} C_{1}}+\frac{{ }^{2} C_{1}}{{ }^{8} C_{1}}\right)$

$$
=\frac{1}{2}\left(\frac{3}{7}+\frac{2}{8}\right)=\frac{19}{56}
$$

20 (c)
Favourable cases will be (5,1),(4,2),(2,4),(1,5)
Hence, required probability $=\frac{4}{6.5}=\frac{2}{15}$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | A | C | B | C | A | A | D | B | C | B |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | D | C | D | D | C | C | C | C | B | C |
| | | | | | | | | | | |

