

CLASS : XIth DATE :

Solutions

SUBJECT : MATHS DPP NO. :7

Topic :-PROBABILITY

1 **(b)**

Total number of ways placing 3 letters in three envelopes

 $= 3! = 3 \times 2 \times 1 = 6$

Out of these ways only one way is correct

 \therefore The required probability $=\frac{1}{6}$

Given probability of speaking truth are

$$P(A) = \frac{4}{5}$$
 and $P(B) = \frac{3}{4}$

And their corresponds probabilities of not speaking truth are

 $P(\overline{A}) = \frac{1}{5}$ and $P(\overline{B}) = \frac{1}{4}$

The probability that they contra<mark>dict e</mark>ach other

$$= P(A) \times P(\overline{B}) + P(\overline{A}) \times P(B)$$
$$= \frac{4}{5} \times \frac{1}{4} + \frac{1}{5} \times \frac{3}{4}$$
$$= \frac{1}{5} + \frac{3}{20}$$
$$= \frac{7}{20}$$
3 (d)

Consider the following events:

A = Numbers on two tickets are not more than 10

B = Lowest number on two tickets is 5

 $\therefore \text{ Required probability } = P(B/A)$

 $\Rightarrow \text{Required Probability} = \frac{P(A \cap B)}{P(A)} = \frac{{}^{5}C_{1} \times {}^{1}C_{1} / {}^{100}C_{2}}{{}^{10}C_{2} / {}^{100}C_{2}} = \frac{1}{9}$

4 **(b)**

Let A_i denote an event of getting number i(i = 1, 2, ..., 6) on each die. Then, A_i , i = 1, 2, ..., 6 are mutually exclusive events

:. Required probability $= P(A_1) + P(A_2) + ... + P(A_6)$...(i) Now, $P(A_i) =$ Probability of getting number *i* on each die $\Rightarrow P(A_i) = \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} = \frac{1}{216}$ So, required probability $= \frac{6}{216} = \frac{1}{36}$ [From (i)] <u>ALITER</u> We have, Total number of elementary events $= 6 \times 6 \times 6 = 216$ Same number can be obtained on each die in one of the following ways: (1,1,1),(2,2,2),(3,3,3),(4,4,4),(5,5,5),(6,6,6) Favourable number of elementary events = 6Hence, required probability $= \frac{6}{216} = \frac{1}{36}$ 5 (b) $P(B_2)P(\frac{R}{B_2})$

$$P\left(\frac{B_2}{R}\right) = \frac{P(B_2)P(B_2)}{P(B_1)P\left(\frac{R}{B_1}\right) + P(B_2)P\left(\frac{R}{B_2}\right) + P(B_3)P\left(\frac{R}{B_3}\right)}$$

$$= \frac{\frac{1}{3} \times \frac{2}{5}}{\frac{1}{2} \times \frac{1}{3} + \frac{1}{3} \times \frac{2}{5} + \frac{1}{6} \times \frac{3}{7}}$$
$$= \frac{\frac{2}{15}}{\frac{1}{6} + \frac{2}{15} + \frac{1}{14}} = \frac{14}{39}$$

6 **(d)**

Total number of elementary events associated to the random experiment is $36 \times 36 = 36^2$ Throws of the two persons are equal means the sum of the numbers are same. The sum of the numbers can be 2,3,...,12.

 \therefore Favourable number of elementary events

$$= 2(1 \times 1 + 2 \times 2 + ... + 3 \times 3 + 5 \times 5) + 6 \times 6 = 146$$

Hence, required probability
$$= -1\frac{146}{36^2} = \frac{572}{648}$$

7 (c)

At least one spade and one ace can be drawn in two mutually exclusive ways:

(i) Drawing one spade and one ace from 3 aces other than ace of spade

(ii) Drawing ace of spade and one other spade.

$$=\frac{{}^{13}C_1 \times {}^{3}C_1 + {}^{12}C_1 \times {}^{1}C_1}{{}^{52}C_2} = \frac{51}{{}^{52}C_2} = \frac{1}{26}$$
8 (d)

 $P \text{ (selecting a black ball)} = \frac{{}^{5}C_{1}}{{}^{12}C_{1}}$ $P \text{ (selecting a red ball)} = \frac{{}^{3}C_{1}}{{}^{12}C_{1}}$

P (black ball or red ball) = $\frac{{}^{5}C_{1} + {}^{3}C_{1}}{{}^{12}C_{1}} = \frac{2}{3}$

9 **(b)**

Given total number of bolts=600 Numbers of large bolts=20% of 600

$$=\frac{20}{100}\times 600 = 120$$

Number of small bolts=10% of 600

$$=\frac{10}{100} \times 600 = 60$$

∴ Number of suitable bolts

$$= 600 - 120 - 60 = 420$$

∴ Probability of selecting suitable bolt

$$=\frac{420}{100}=\frac{7}{100}$$

$$=\frac{10}{600}=\frac{10}{10}$$

10 (d)

Let *A* denote the event that the student is selected in I.I.T. entrance test and B denotes the event that he is selected in Roorkee entrance test. Then,

 $P(A) = 0.2, P(B) = 0.5 \text{ and } P(A \cap B) = 0.3$

 \therefore Required probability = $P(\overline{A} \cap \overline{B})$

- \Rightarrow Required probability = $1 P(A \cup B)$
- $\Rightarrow \text{Required probability} = 1 \{ \frac{P(A)}{P(A)} + P(B) \frac{P(A \cap B)}{P(A \cap B)} \}$
- \Rightarrow Required probability = 1 (0.2 + 0.5 0.3) = 0.6

11 (c)

The probability that *A* get *r* heads in the three tosses of a coin is

 $P(X = r) = {}^{3}C_{r}\left(\frac{1}{2}\right)^{3}$. The probability that *A* and *B* both get *r* heads in three tosses of a coin is

$${}^{3}C_{r}\left(\frac{1}{2}\right)^{3} \cdot {}^{3}C_{r}\left(\frac{1}{2}\right)^{3}$$
$$= ({}^{3}C_{r})^{2}\left(\frac{1}{2}\right)^{6}$$

 \therefore Required probability $=\sum_{r=0}^{3} ({}^{3}C_{r})^{2} (\frac{1}{2})^{6}$

$$= \left(\frac{1}{2}\right)^6 (1+9+9+1) = \frac{20}{64} = \frac{5}{16}$$

12 **(b)**

We have, $P(S) = P\{5, 6\} = \frac{2}{6} = \frac{1}{3}$

Let us denote the occurrence of a number greater than 4 in a single throw of the die and *F* denote its failure.

$$\Rightarrow P(F) = \frac{2}{3}$$

P (an even number of tosses is needed)

$$= P(FS \text{ or } FFFS \text{ or } FFFFFS \text{ or }...)$$

= $P(F)P(S) + P(F)^3P(S) + P(F)^5P(S) + ...$
= $\frac{P(F)P(S)}{1 - P(F)^2} = \frac{\frac{2}{9}}{1 - \frac{4}{9}} = \frac{2}{5}$

13 **(c)**

Let E = event when each American man is seated adjacent to his wife

and A = event when Indian man is seated adjacent to his wife.

Now,
$$n(A \cap E) = (4!) \times (2!)^5$$

Even when each American man is seated adjacent to his wife.

Again, $n(E) = (5!) \times (2!)^4$

$$\therefore P\left(\frac{A}{E}\right) = \frac{n(A \cap E)}{n(E)}$$

 $=\frac{(4!)\times(2!)^3}{(5!)\times(2!)^4}=\frac{2}{5}$

14 **(a)**

Required probability $=\frac{{}^{5}C_{2}+{}^{4}C_{2}}{{}^{9}C_{2}}=\frac{4}{9}$

15 **(b)**

Let A_1 be the event that the black card is lost, A_2 be the event that red card is lost and let E be the event that first 13 cards examined are red. Then,

Required probability $= P(A_1/E)$

We have,

 $P(A_1) = P(A_2) = 1/2$, as black and red cards were initially equal in number

Also, $P(E/A_1) = \frac{{}^{26}C_{13}}{{}^{51}C_{13}}$ and $P(E/A_2) = \frac{{}^{25}C_{13}}{{}^{51}C_{13}}$

 $\therefore \text{ Required probability } = P(A_1/E)$

$$=\frac{P(E/A_1)P(A_1)}{P(E/A_1)P(A_1)+P(E/A_2)P(A_2)}=\frac{\frac{1}{2}\times\frac{\frac{26}{51}C_{13}}{\frac{1}{2}\times\frac{26}{51}C_{13}}}{\frac{1}{2}\times\frac{26}{51}C_{13}}+\frac{1}{2}\times\frac{25}{51}C_{13}}=\frac{2}{3}$$

16 **(b)**

The probability of getting at least one head in *n* tosses of a coin $= 1 - \left(\frac{1}{2}\right)^n$

$$\therefore 1 - \left(\frac{1}{2}\right)^n \ge 0.9 \Rightarrow \left(\frac{1}{2}\right)^n \le 0.1 \Rightarrow 2^n \ge 10 \Rightarrow n \ge 4$$

Hence, the least value of *n* is 4

17 (b) Favourable ways = $3! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} \right) = 2$ Total ways = 3! \therefore Probability $=\frac{2}{3!}=\frac{1}{3}$ 18 (a) $\therefore f(x) = x^3 + ax^2 + bx + c$ $\therefore f'(x) = 3x^2 + 2ax + b$ y = f(x) is increasing. $\Rightarrow f'(x) \ge 0, \forall x$ And for f'(x) = 0 should not form an interval. $\Rightarrow 4a^2 - 4 \times 3 \times b \le 0$ $\Rightarrow a^2 - 3b < 0$ This is true for exactly 16 ordered pairs (a,b), $1 \le a,b \le 6$ namely (1, 1), (1, 2), (1, 3), (1, 4); (1, 5), (1, 6), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6); (3, 3), (3, 4), (3, 5), (3, 6) and (4, 6). Thus, required probability $=\frac{16}{36}=\frac{4}{9}$ 19 (b) P(0 < x < 3) = P(x = 1) + P(x = 2) $=\frac{{}^{3}C_{1}\times{}^{7}C_{3}}{{}^{10}C_{4}}+\frac{{}^{3}C_{2}\times{}^{7}C_{2}}{{}^{10}C_{4}}=\frac{3\times35}{210}+\frac{3\times21}{210}=\frac{4}{5}$ 20 (c) Given, np = 4, npq = 2 $\Rightarrow p = q = \frac{1}{2}$ \therefore $n = 4 \times 2 = 8$ $\therefore P(X > 6) = {}^{8}C_{7}\left(\frac{1}{2}\right)^{7}\left(\frac{1}{2}\right) + {}^{8}C_{8}\left(\frac{1}{2}\right)^{8}$ $=\frac{8}{256}+\frac{1}{256}=\frac{9}{256}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	С	D	В	В	D	C	D	В	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	С	В	C	А	В	В	В	А	В	С

