CLASS : XIth

Solutions

SUBJECT : MATHS
DPP NO. :7

Topic:-PROBABILITY

1
(b)

Total number of ways placing 3 letters in three envelopes
$=3!=3 \times 2 \times 1=6$
Out of these ways only one way is correct
\therefore The required probability $=\frac{1}{6}$
2 (c)
Given probability of speaking truth are
$P(A)=\frac{4}{5}$ and $P(B)=\frac{3}{4}$
And their corresponds probabilities of not speaking truth are
$P(\bar{A})=\frac{1}{5}$ and $P(\bar{B})=\frac{1}{4}$
The probability that they contradict each other
$=P(A) \times P(\bar{B})+P(\bar{A}) \times P(B)$
$=\frac{4}{5} \times \frac{1}{4}+\frac{1}{5} \times \frac{3}{4}$
$=\frac{1}{5}+\frac{3}{20}$
$=\frac{7}{20}$
3
(d)

Consider the following events:
$A=$ Numbers on two tickets are not more than 10
$B=$ Lowest number on two tickets is 5
\therefore Required probability $=P(B / A)$
\Rightarrow Required Probability $=\frac{P(A \cap B)}{P(A)}=\frac{{ }^{5} C_{1} \times{ }^{1} C_{1} /{ }^{100} C_{2}}{{ }^{10} C_{2} /{ }^{100} C_{2}}=\frac{1}{9}$

4
 (b)

Let A_{i} denote an event of getting number $i(i=1,2, \ldots, 6)$ on each die. Then, $A_{i}, \mathrm{i}=1,2, \ldots, 6$ are mutually exclusive events
\therefore Required probability $=P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots+P\left(A_{6}\right)$
Now,
$P\left(A_{i}\right)=$ Probability of getting number i on each die
$\Rightarrow P\left(A_{i}\right)=\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6}=\frac{1}{216}$
So, required probability $=\frac{6}{216}=\frac{1}{36} \quad[$ From (i)]
ALITER We have,
Total number of elementary events $=6 \times 6 \times 6=216$
Same number can be obtained on each die in one of the following ways:
$(1,1,1),(2,2,2),(3,3,3),(4,4,4),(5,5,5),(6,6,6)$
Favourable number of elementary events $=6$
Hence, required probability $=\frac{6}{216}=\frac{1}{36}$
5 (b)

$$
\begin{aligned}
& P\left(\frac{B_{2}}{R}\right)=\frac{P\left(B_{2}\right) P\left(\frac{R}{B_{2}}\right)}{P\left(B_{1}\right) P\left(\frac{R}{B_{1}}\right)+P\left(B_{2}\right) P\left(\frac{R}{B_{2}}\right)+P\left(B_{3}\right) P\left(\frac{R}{B_{3}}\right)} \\
& =\frac{\frac{1}{3} \times \frac{2}{5}}{\frac{1}{2} \times \frac{1}{3}+\frac{1}{3} \times \frac{2}{5}+\frac{1}{6} \times \frac{3}{7}} \\
& =\frac{\frac{2}{15}}{\frac{1}{6}+\frac{2}{15}+\frac{1}{14}}=\frac{14}{39}
\end{aligned}
$$

6
(d)

Total number of elementary events associated to the random experiment is $36 \times 36=36^{2}$
Throws of the two persons are equal means the sum of the numbers are same. The sum of the numbers can be $2,3, \ldots, 12$.
\therefore Favourable number of elementary events
$=2(1 \times 1+2 \times 2+\ldots+3 \times 3+5 \times 5)+6 \times 6=146$
Hence, required probability $=-1 \frac{146}{36^{2}}=\frac{572}{648}$
7 (c)
At least one spade and one ace can be drawn in two mutually exclusive ways:
(i) Drawing one spade and one ace from 3 aces other than ace of spade
(ii) Drawing ace of spade and one other spade.
\therefore Required probability

$$
=\frac{{ }^{13} C_{1} \times{ }^{3} C_{1}+{ }^{12} C_{1} \times{ }^{1} C_{1}}{{ }^{52} C_{2}}=\frac{51}{{ }^{52} C_{2}}=\frac{1}{26}
$$

8 (d)
$P($ selecting a black ball $)=\frac{{ }^{5} C_{1}}{{ }^{12} C_{1}}$
$P($ selecting a red ball $)=\frac{{ }^{3} C_{1}}{{ }^{12} C_{1}}$
$P($ black ball or red ball $)=\frac{{ }^{5} C_{1}+{ }^{3} C_{1}}{{ }^{12} C_{1}}=\frac{2}{3}$
$9 \quad$ (b)
Given total number of bolts $=600$
Numbers of large bolts $=20 \%$ of 600
$=\frac{20}{100} \times 600=120$
Number of small bolts $=10 \%$ of 600
$=\frac{10}{100} \times 600=60$
\therefore Number of suitable bolts
$=600-120-60=420$
\therefore Probability of selecting suitable bolt
$=\frac{420}{600}=\frac{7}{10}$
10 (d)
Let A denote the event that the student is selected in I.I.T. entrance test and B denotes the event that he is selected in Roorkee entrance test. Then,
$P(A)=0.2, P(B)=0.5$ and $P(A \cap B)=0.3$
\therefore Required probability $=P(\bar{A} \cap \bar{B})$
\Rightarrow Required probability $=1-P(A \cup B)$
\Rightarrow Required probability $=1-\{P(A)+P(B)-P(A \cap B)\}$
\Rightarrow Required probability $=1-(0.2+0.5-0.3)=0.6$
11 (c)
The probability that A get r heads in the three tosses of a coin is
$P(X=r)={ }^{3} C_{r}\left(\frac{1}{2}\right)^{3}$. The probability that A and B both get r heads in three tosses of a coin is
${ }^{3} C_{r}\left(\frac{1}{2}\right)^{3} \cdot{ }^{3} C_{r}\left(\frac{1}{2}\right)^{3}$
$=\left({ }^{3} C_{r}\right)^{2}\left(\frac{1}{2}\right)^{6}$
\therefore Required probability $=\sum_{r=0}^{3}\left({ }^{3} C_{r}\right)^{2}\left(\frac{1}{2}\right)^{6}$
$=\left(\frac{1}{2}\right)^{6}(1+9+9+1)=\frac{20}{64}=\frac{5}{16}$
12 (b)
We have, $P(S)=P\{5,6\}=\frac{2}{6}=\frac{1}{3}$
Let us denote the occurrence of a number greater than 4 in a single throw of the die and F denote its failure.
$\Rightarrow P(F)=\frac{2}{3}$
P (an even number of tosses is needed)
$=P(F S$ or $F F F S$ or $F F F F F S$ or...)
$=P(F) P(S)+P(F)^{3} P(S)+P(F)^{5} P(S)+\ldots$
$=\frac{P(F) P(S)}{1-P(F)^{2}}=\frac{\frac{2}{9}}{1-\frac{4}{9}}=\frac{2}{5}$
13
(c)

Let $E=$ event when each American man is seated adjacent to his wife
and $A=$ event when Indian man is seated adjacent to his wife.
Now, $n(A \cap E)=(4!) \times(2!)^{5}$
Even when each American man is seated adjacent to his wife.
Again, $n(E)=(5!) \times(2!)^{4}$
$\therefore P\left(\frac{A}{E}\right)=\frac{n(A \cap E)}{n(E)}$
$=\frac{(4!) \times(2!)^{3}}{(5!) \times(2!)^{4}}=\frac{2}{5}$

14 (a)

Required probability $=\frac{{ }^{5} C_{2}+{ }^{4} C_{2}}{{ }^{9} C_{2}}=\frac{4}{9}$
15 (b)
Let A_{1} be the event that the black card is lost, A_{2} be the event that red card is lost and let E be the event that first 13 cards examined are red. Then,
Required probability $=P\left(A_{1} / E\right)$
We have,
$P\left(A_{1}\right)=P\left(A_{2}\right)=1 / 2$, as black and red cards were initially equal in number
Also, $P\left(E / A_{1}\right)=\frac{{ }^{26} C_{13}}{{ }^{51} C_{13}}$ and $P\left(E / A_{2}\right)=\frac{{ }^{25} C_{13}}{{ }^{51} C_{13}}$
\therefore Required probability $=P\left(A_{1} / E\right)$
$=\frac{P\left(E / A_{1}\right) P\left(A_{1}\right)}{P\left(E / A_{1}\right) P\left(A_{1}\right)+P\left(E / A_{2}\right) P\left(A_{2}\right)}=\frac{\frac{1}{2} \times{ }^{26} C_{13}}{\frac{1}{21} C_{13}} \times \frac{{ }^{26} C_{13}}{{ }^{51} C_{13}}+\frac{1}{2} \times \frac{{ }^{25} C_{13}}{{ }^{51} C_{13}}=\frac{2}{3}$
16
(b)

The probability of getting at least one head in n tosses of a coin $=1-\left(\frac{1}{2}\right)^{n}$
$\therefore 1-\left(\frac{1}{2}\right)^{n} \geq 0.9 \Rightarrow\left(\frac{1}{2}\right)^{n} \leq 0.1 \Rightarrow 2^{n} \geq 10 \Rightarrow n \geq 4$
Hence, the least value of n is 4

17
(b)

Favourable ways $=3!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}\right)=2$
Total ways $=3$!
\therefore Probability $=\frac{2}{3!}=\frac{1}{3}$

18 (a)
$\because f(x)=x^{3}+a x^{2}+b x+c$
$\therefore f^{\prime}(x)=3 x^{2}+2 a x+b$
$y=f(x)$ is increasing.
$\Rightarrow f^{\prime}(x) \geq 0, \forall x$
And for $f^{\prime}(x)=0$ should not form an interval.
$\Rightarrow 4 a^{2}-4 \times 3 \times b \leq 0$
$\Rightarrow a^{2}-3 b \leq 0$
This is true for exactly 16 ordered pairs $(a, b), 1 \leq a, b \leq 6$ namely $(1,1),(1,2),(1,3),(1,4) ;(1,5)$, $(1,6),(2,2),(2,3),(2,4),(2,5),(2,6) ;(3,3),(3,4),(3,5),(3,6)$ and $(4,6)$.
Thus, required probability $=\frac{16}{36}=\frac{4}{9}$
19
(b)
$P(0<x<3)=P(x=1)+P(x=2)$
$=\frac{{ }^{3} C_{1} \times{ }^{7} C_{3}}{{ }^{10} C_{4}}+\frac{{ }^{3} C_{2} \times{ }^{7} C_{2}}{{ }^{10} C_{4}}=\frac{3 \times 35}{210}+\frac{3 \times 21}{210}=\frac{4}{5}$
20
(c)

Given, $n p=4, n p q=2$
$\Rightarrow p=q=\frac{1}{2}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	B	C	D	B	B	D	C	D	B	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	C	B	C	A	B	B	B	A	B	C

