CLASS : XIth
DATE :

1
(c)

Given, $f(x)=\frac{x}{2} \quad[0 \leq x \leq 2]$

$$
\begin{aligned}
& \therefore P(X>1.5)=\int_{1.5}^{2} \frac{x}{2} d x=\left[\frac{x^{2}}{4}\right]_{1.5}^{2} \\
& =0.4375
\end{aligned}
$$

and $P(X>1)=\int_{1}^{2} \frac{x}{2} d x=\left[\frac{x^{2}}{4}\right]_{1}^{2}=0.75$
$\therefore P\left(\frac{X>1.5}{X>1}\right)=\frac{P(X>1.5)}{P(X>1)}$
$=\frac{0.4375}{0.75}=\frac{7}{12}$

2
(a)

Required probability $=1-\left(1-\frac{2}{3}\right)\left(1-\frac{3}{4}\right)=\frac{11}{12}$
3
(a)

Given, $P(A \cup B)=0.6, P(A \cap B)=0.2$
Probability of exactly one of the event occurs is

$$
\begin{aligned}
& P(\bar{A} \cap B)+P(A \cap \bar{B}) \\
& =P(B)-P(A \cap B)+P(A)-P(A \cap B) \\
& =P(A \cup B)+P(A \cap B)-2 P(A \cap B) \\
& {[\because P(A \cup B)=P(A)+P(B)-P(A \cap B)]} \\
& =P(A \cup B)-P(A \cap B) \\
& =0.6-0.2=0.4
\end{aligned}
$$

(c)

Probability of each case $=\frac{9}{15}=\frac{3}{5}$
Required probability (with replacement) $=\left(\frac{3}{5}\right)^{7}$
$5 \quad$ (b)
The total number of ways $=6^{3}=216$
If the second number is $i(i>1)$, then the total number of favourable ways
$=\sum_{i=1}^{5}(i-1)(6-i)=20$
\therefore Required probability $=\frac{20}{216}=\frac{5}{54}$
6
(b)

$$
\begin{aligned}
& \frac{P(X=K)}{P(X=k-1)}=\frac{{ }^{n} C_{k} p^{k} q^{n-k}}{{ }^{n} C_{k-1} p^{k-1} q^{n-k+1}} \\
& =\left(\frac{n-k+1}{k}\right) \cdot \frac{p}{q}
\end{aligned}
$$

8 (d)
We have, $P\left(E_{i}\right)=\frac{1}{2}$ for $i=1,2,3$
For $i \neq j$, we have,
$P\left(E_{i} \cap E_{j}\right)=\frac{1}{4}=P\left(E_{i}\right) P\left(E_{j}\right)$
$\Rightarrow E_{i}$ and E_{j} are independent events for $i \neq j$
Also, $P\left(E_{1} \cap E_{2} \cap E_{3}\right)=\frac{1}{4} \neq P\left(E_{1}\right) P\left(E_{2}\right) P\left(E_{3}\right)$
$\Rightarrow E_{1}, E_{2}, E_{3}$ are not independent
Hence option (d) is not correct
9
(a)
$P(A)=1-P(\bar{A})=1-\frac{2}{3}=\frac{1}{3}$
Using, $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$\Rightarrow \frac{3}{4}=\frac{1}{3}+P(B)-\frac{1}{4} \Rightarrow P(B)=\frac{2}{3}$
Now, $P(\bar{A} \cap B)=(B)-P(A \cap B)=\frac{2}{3}-\frac{1}{4}=\frac{5}{12}$
11 (a)
Let x, y and z be the parts and $x \leq y \leq z$. Then, $(x, y, z) \in(1,1,8),(1,2,7),(1,3,6),(1,4,5),(2,2,6)$ $,(2,3,5),(3,3,4)(2,4,4)\}$.Only the cases when (x, y, z) formed a triangle are $\{(3,3,4),(2,4,4)\}$, Required probability $=\frac{2}{8}=\frac{1}{4}$.
12
(b)

Let E_{1} denote the event of travelling by train and E_{2} denote the event travelling by plane.
$P\left(E_{1}\right)=\frac{2}{3}, P\left(E_{2}\right)=\frac{1}{5}$
$P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)$
$=\frac{2}{3}+\frac{1}{5}=\frac{13}{15}$
13
(a)

Three digit numbers multiple of 11 are 110, 121,...,990 (81 numbers). Now number also divisible by 9 are divisible by 99 . So, numbers are 198, 297,...,990(9 numbers).
So, required probability $=\frac{9}{81}=\frac{1}{9}$.

14

(b)

If any number the last digit can be $0,1,2,3,4,5,6,7,8,9$. We want that the last digit in the product is an odd digit other than 5 i.e. it is any one of the digits $1,3,7,9$. This means that the product is not divisible by 2 or 5 . The probability that a number is divisible by 2 or 5 is $\frac{6}{10}$, and in the case the last digit can be one of $0,2,4,5,6$ or 8 . The probability that the number is not divisible by 2 or 5 , is $1-\frac{6}{10}$ $=\frac{2}{5}$
In order that the product is not divisible by 2 or 5 , none of the constituent numbers should be divisible by 2 or 5 and its probability is $\left(\frac{2}{5}\right)^{4}=\frac{16}{125}$
15 (c)
Let $E=$ Event of getting sum of 7 in two dice $=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$
Now, $P(E)=\frac{6}{36}=\frac{1}{6}$ (say)
$\Rightarrow p=\frac{1}{6}$
$\therefore q=1-p=\frac{5}{6}$
Required probability $={ }^{4} C_{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{2}$

$$
=6 \times \frac{5^{2}}{6^{4}}=\frac{25}{216}
$$

16 (d)

The probability that Mr. A selected the loosing horse
$=\frac{4}{5} \times \frac{3}{4}=\frac{3}{5}$
The probability that Mr. A selected the winning horse

$$
=1-\frac{3}{5}=\frac{2}{5}
$$

17
Given, $S=\{1,2,3 \ldots, 50\}$
$A=\left\{n \in S: n+\frac{50}{n}>27\right\}$
$=\left\{n \in S: n^{2}-27 n+50>0\right\}$
$=\{n \in S: n<2$ or $n>25\}$
$=\{1,26,27, \ldots, 50\}$
$\Rightarrow n(A)=26$
$B=\{n \in S: n$ is a prime $\}$
$=\{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47\}$
$\Rightarrow n(B)=15$
$\therefore C=\{n \in S: n$ is a square $\}$
$=\{1,4,9,16,25,36,49\}$
$\Rightarrow n(C)=7$
$\therefore P(A)=\frac{n(A)}{n(S)}=\frac{26}{50}, P(B)=\frac{15}{50}, P(C)=\frac{7}{50}$
$\Rightarrow P(A)>P(B)>P(C)$
18
(c)
\therefore Required probability
$=P(W B W B)+(B W B W)$
$=\frac{{ }^{5} C_{1} \times{ }^{3} C_{1} \times{ }^{4} C_{1} \times{ }^{2} C_{1}}{{ }^{8} C_{1} \times{ }^{7} C_{1} \times{ }^{6} C_{1} \times{ }^{5} C_{1}}+\frac{{ }^{3} C_{1} \times{ }^{5} C_{1} \times{ }^{2} C_{1} \times{ }^{4} C_{1}}{{ }^{8} C_{1} \times{ }^{7} C_{1} \times{ }^{6} C_{1} \times{ }^{5} C_{1}}$
$=2\left(\frac{5 \times 3 \times 4 \times 2}{8 \times 7 \times 6 \times 5}\right)=\frac{1}{7}$
19
(c)

The total number of favourable cases, $n(E)=18$
The total number of cases, $n(S)={ }^{20} C_{3}$
$=\frac{20 \times 19 \times 18}{3 \times 2 \times 1}=1140$
\therefore Required probability $=\frac{18}{1140}=\frac{3}{190}$
20
(b)

The sum of two numbers is odd only when one is odd and other is even.
\therefore Required probability $=\frac{{ }^{20} C_{1} .{ }^{20} C_{1}}{{ }^{40} C_{2}}$
$=\frac{20 \times 20}{\frac{40 \times 39}{2 \times 1}}=\frac{20 \times 20}{20 \times 39}$
$=\frac{20}{39}$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | C | A | A | C | B | B | A | D | A | B |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | A | B | A | B | C | D | B | C | C | B |
| | | | | | | | | | | |

