

CLASS: XIth

DATE:

Solutions

SUBJECT: MATHS

DPP NO.:6

Topic:-PROBABILITY

Given,
$$f(x) = \frac{x}{2}$$
 $[0 \le x \le 2]$

$$\therefore P(X > 1.5) = \int_{1.5}^{2} \frac{x}{2} dx = \left[\frac{x^{2}}{4}\right]_{1.5}^{2}$$

$$= 0.4375$$

and
$$P(X > 1) = \int_{1}^{2} \frac{x}{2} dx = \left[\frac{x^{2}}{4}\right]_{1}^{2} = 0.75$$

$$\therefore P\left(\frac{X > 1.5}{X > 1}\right) = \frac{P(X > 1.5)}{P(X > 1)}$$

$$=\frac{0.4375}{0.75}=\frac{7}{12}$$

2 **(a**

Required probability =
$$1 - (1 - \frac{2}{3})(1 - \frac{3}{4}) = \frac{11}{12}$$

Given,
$$P(A \cup B) = 0.6$$
, $P(A \cap B) = 0.2$

Probability of exactly one of the event occurs is

$$P(\overline{A}\cap B)+P(A\cap \overline{B})$$

$$= P(B) - P(A \cap B) + P(A) - P(A \cap B)$$

$$= P(A \cup B) + P(A \cap B) - 2P(A \cap B)$$

$$[: P(A \cup B) = P(A) + P(B) - P(A \cap B)]$$

$$= P(A \cup B) - P(A \cap B)$$

$$= 0.6 - 0.2 = 0.4$$

4 **(c)**

Probability of each case $=\frac{9}{15} = \frac{3}{5}$

Required probability (with replacement) = $\left(\frac{3}{5}\right)^7$

5 **(b)**

The total number of ways $= 6^3 = 216$

If the second number is i(i > 1), then the total number of favourable ways

$$=\sum_{i=1}^{5}{(i-1)(6-i)}=20$$

 \therefore Required probability $=\frac{20}{216} = \frac{5}{54}$

6 **(b**)

$$\frac{P(X=K)}{P(X=k-1)} = \frac{{}^{n}C_{k}p^{k}q^{n-k}}{{}^{n}C_{k-1}p^{k-1}q^{n-k+1}}$$

$$= \Big(\!\frac{n-k+1}{k}\!\Big)\!.\frac{p}{q}$$

8 **(d**)

We have, $P(E_i) = \frac{1}{2}$ for i = 1,2,3

For $i \neq j$, we have,

$$P(E_i \cap E_j) = \frac{1}{4} = P(E_i)P(E_j)$$

 $\Rightarrow E_i$ and E_j are independent events for $i \neq j$

Also, $P(E_1 \cap E_2 \cap E_3) = \frac{1}{4} \neq P(E_1) P(E_2) P(E_3)$

 $\Rightarrow E_1, E_2, E_3$ are not independent

Hence option (d) is not correct

9 **(a)**

$$P(A) = 1 - P(\overline{A}) = 1 - \frac{2}{3} = \frac{1}{3}$$

Using, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

$$\Rightarrow \frac{3}{4} = \frac{1}{3} + P(B) - \frac{1}{4} \Rightarrow P(B) = \frac{2}{3}$$

Now,
$$P(\overline{A} \cap B) = (B) - P(A \cap B) = \frac{2}{3} - \frac{1}{4} = \frac{5}{12}$$

11 **(a)**

Let x,y and z be the parts and $x \le y \le z$. Then, $(x,y,z) \in (1,1,8)$, (1,2,7), (1,3,6), (1,4,5), (2,2,6), (2,3,5), (3,3,4)(2,4,4)}. Only the cases when (x,y,z) formed a triangle are $\{(3,3,4),(2,4,4)\}$, Required probability $=\frac{2}{8}=\frac{1}{4}$.

12 **(b)**

Let E_1 denote the event of travelling by train and E_2 denote the event travelling by plane.

$$P(E_1) = \frac{2}{3}, P(E_2) = \frac{1}{5}$$

$$P(E_1 \cup E_2) = P(E_1) + P(E_2)$$

$$= \frac{2}{3} + \frac{1}{5} = \frac{13}{15}$$
13 (a)

Three digit numbers multiple of 11 are 110, 121,...,990 (81 numbers). Now number also divisible by 9 are divisible by 99. So, numbers are 198, 297,...,990(9 numbers).

So, required probability $=\frac{9}{81}=\frac{1}{9}$.

14 **(b**)

If any number the last digit can be 0,1,2,3,4,5,6,7,8,9. We want that the last digit in the product is an odd digit other than 5 i.e. it is any one of the digits 1,3,7,9. This means that the product is not divisible by 2 or 5. The probability that a number is divisible by 2 or 5 is $\frac{6}{10}$, and in the case the last digit can be one of 0,2,4,5,6 or 8. The probability that the number is not divisible by 2 or 5, is $1 - \frac{6}{10} = \frac{2}{5}$

In order that the product is not divisible by 2 or 5, none of the constituent numbers should be divisible by 2 or 5 and its probability is $\left(\frac{2}{5}\right)^4 = \frac{16}{125}$

Let E = Event of getting sum of 7 in two dice= $\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$

Now,
$$P(E) = \frac{6}{36} = \frac{1}{6}$$
 (say)

$$\Rightarrow p = \frac{1}{6}$$

$$\therefore q = 1 - p = \frac{5}{6}$$

Required probability = ${}^{4}C_{2}(\frac{1}{6})^{2}(\frac{5}{6})^{2}$

$$=6\times\frac{5^2}{6^4}=\frac{25}{216}$$

The probability that Mr. \boldsymbol{A} selected the loosing horse

$$=\frac{4}{5}\times\frac{3}{4}=\frac{3}{5}$$

The probability that Mr. A selected the winning horse

$$=1-\frac{3}{5}=\frac{2}{5}$$

Given, $S = \{1, 2, 3, ..., 50\}$

$$A = \left\{ n \in S: n + \frac{50}{n} > 27 \right\}$$

$$= \{n \in S: n^2 - 27n + 50 > 0\}$$

$$= \{ n \in S : n < 2 \text{ or } n > 25 \}$$

$$= \{1, 26, 27, ..., 50\}$$

$$\Rightarrow n(A) = 26$$

$$B = \{n \in S: n \text{ is a prime}\}\$$

$$= \{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47\}$$

$$\Rightarrow n(B) = 15$$

$$\therefore$$
 $C = \{n \in S: n \text{ is a square}\}$

$$= \{1,4,9,16,25,36,49\}$$

$$\Rightarrow n(C) = 7$$

$$\therefore P(A) = \frac{n(A)}{n(S)} = \frac{26}{50}, P(B) = \frac{15}{50}, P(C) = \frac{7}{50}$$

$$\Rightarrow P(A) > P(B) > P(C)$$

18 **(c)**

∴ Required probability

$$= P(WBWB) + (BWBW)$$

$$= \frac{{}^{5}C_{1} \times {}^{3}C_{1} \times {}^{4}C_{1} \times {}^{2}C_{1}}{{}^{8}C_{1} \times {}^{7}C_{1} \times {}^{6}C_{1} \times {}^{5}C_{1}} + \frac{{}^{3}C_{1} \times {}^{5}C_{1} \times {}^{2}C_{1} \times {}^{4}C_{1}}{{}^{8}C_{1} \times {}^{7}C_{1} \times {}^{6}C_{1} \times {}^{5}C_{1}}$$
$$= 2\left(\frac{5 \times 3 \times 4 \times 2}{8 \times 7 \times 6 \times 5}\right) = \frac{1}{7}$$

19 **(c)**

The total number of favourable cases, n(E) = 18

The total number of cases, $n(S) = {}^{20}C_3$

$$= \frac{20 \times 19 \times 18}{3 \times 2 \times 1} = 1140$$

$$\therefore \text{ Required probability} = \frac{18}{1140} = \frac{3}{190}$$

20 **(b**)

The sum of two numbers is odd only when one is odd and other is even.

$$\therefore \text{ Required probability} = \frac{{}^{20}C_1. \, {}^{20}C_1}{{}^{40}C_2}$$

$$= \frac{20 \times 20}{\frac{40 \times 39}{2 \times 1}} = \frac{20 \times 20}{20 \times 39}$$
$$= \frac{20}{39}$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	A	A	С	В	В	A	D	A	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	A	В	A	В	С	D	В	С	С	В

