CLASS : XIth

Topic:-PROBABILITY

1
(c)

Let $P(R)=10 \%=\frac{1}{10}$
$P(F)=5 \%=\frac{1}{20}$
$P(R \cap F)=3 \%=\frac{3}{100}$
Probability of getting either rich or famous but not both

$$
\begin{aligned}
& =P\left(R \cap F^{\prime}\right)+P\left(R^{\prime} \cap F\right) \\
& =P(R)-P(R \cap F)+P(F)-P(R \cap F) \\
& =P(R)+P(F)-2 P(R \cap F) \\
& =\frac{1}{10}+\frac{1}{20}-\frac{6}{100}=\frac{10+5-6}{100}=0.09
\end{aligned}
$$

2 (c)
Let A and B are the Ist and IInd aeroplane hit the target respectively and their corresponding probabilities are
$P(A)=0.3$ and $P(B)=0.2$
$\Rightarrow P(\bar{A})=0.7$ and $P(\bar{B})=0.8$
\therefore Required probability
$=P(\bar{A}) P(B)+P(\bar{A}) P(\bar{B}) P(\bar{A}) P(B)+\ldots$
$=(0.7)(0.2)+(0.7)(0.8)(0.7)(0.2)+$
$(0.7)(0.8)(0.7)(0.8)(0.7)(0.2)+\ldots$
$=0.14\left[1+(0.56)+(0.56)^{2}+\ldots\right]$
$=0.14\left(\frac{1}{1-0.56}\right)=0.32$
3
(b)

Let probability of box $B, P(B)=P$
According to given condition
$P(A)=2 P(B)=2 P$
Now, $P\left(\frac{R}{A}\right)=\frac{{ }^{3} C_{1}}{{ }^{5} C_{1}}=\frac{3}{5}$
and $P\left(\frac{R}{B}\right)=\frac{{ }^{4} C_{1}}{{ }^{7} C_{1}}=\frac{4}{7}$
$\therefore P\left(\frac{B}{R}\right)=\frac{P(B) \cdot P\left(\frac{R}{B}\right)}{P(A) \cdot P\left(\frac{R}{A}\right)+P(B) \cdot P\left(\frac{R}{B}\right)}$
$=\frac{p \cdot \frac{4}{7}}{2 p \cdot \frac{3}{5}+p \cdot \frac{4}{7}}=\frac{10}{31}$
4
(c)

Clearly,
$P[A \cap(B \cup C)]=P[(A \cap B) \cup(A \cap C)]$
$=P(A \cap B)+P(A \cap C)-P[(A \cap B) \cap(A \cap C)]$
$=P(A \cap B)+P(B \cap C)-P(A \cap B \cap C)$
5
(a)

We have,
$\sum_{k=0}^{4} P(X=k)=1$
$\Rightarrow \sum_{k=0}^{4} C k^{2}=1 \Rightarrow C\left(1^{2}+2^{2}+3^{2}+4^{2}\right)=1 \Rightarrow C=\frac{1}{30}$
6
(a)

Let ${ }^{\prime} H^{\prime}$ denote the head and any of them come is ' A '. Suppose the sequence of m consecutive heads start with first throw, then
$P[(H H \ldots . . m$ times $)(A A \ldots n$ times $)]$
$=\left(\frac{1}{2} \cdot \frac{1}{2} \ldots . . m\right.$ times $)(1 . .1 \ldots . . n$ times $)$
$=\left(\frac{1}{2}\right)^{m}$
Now, suppose the sequence of m consecutive heads start with second throw, the first must be a tail,
$\therefore P[T(H . H \ldots m$ times $)(A . A \ldots n-1$ times $)]$
$=\frac{1}{2} \cdot \frac{1}{2^{m}} \times(1)^{n-1}=\frac{1}{2^{m+1}}$

Similarly, as above
\therefore Required probability
$=\frac{1}{2^{m}}+\left(\frac{1}{2^{m+1}}+\frac{1}{2^{m+1}}+\ldots n\right.$ times $)$
$=\frac{1}{2^{m}}+\frac{n}{2^{m+1}}=\frac{n+2}{2^{m+1}}$

7
 (b)

Given that, $x=33^{n}$
Where, n is a positive integral value.
Here, only four digits may be at the unit place ie, 1, 3, 7, 9 .
$\therefore n(S)=4$
Let E be the event of getting 3 at its units place.
$n(E)=1$
$\therefore P(E)=\frac{n(E)}{n(S)}=\frac{1}{4}$
8
(d)

Here, two numbers are selected from $\{1,2,3,4,5,6$,
$\Rightarrow n(S)=6 \times 5$ \{as one by one without replacement $\}$

Favourable cases,

First number Possible value for second number

1	$2,3,4,5,6$
2	$3,4,5,6$
3	$4,5,6$

There are 12 ways but the numbers may be interchanged
$\therefore n(E)=2 \times 12=24$
\therefore Required probability $=\frac{n(E)}{n(S)}=\frac{24}{30}=\frac{4}{5}$
9
(a)

We have, $P(A)=\frac{1}{5}$ and $P(A \cup B)=\frac{7}{10}$
Now,
$P(A \cup B)=\frac{7}{10}$
$\Rightarrow 1-P(\bar{A}) P(\bar{B})=\frac{7}{10}[\because A$ and B are independent events $]$
$\Rightarrow 1-\frac{4}{5} P(\bar{B})=\frac{7}{10} \Rightarrow \frac{4}{5} P(\bar{B})=\frac{3}{10} \Rightarrow P(\bar{B})=\frac{3}{8}$
10
(c)

Since A is a finite set, therefore every injective map from A to itself is bijective also
\therefore Required probability $=\frac{n!}{n^{n}}=\frac{(n-1)!}{n^{n-1}}$
11
(a)

We are getting a odd number of points, if it will comes (two heads, one tail and three tails)
$\because P(H)=P(T)=\frac{1}{2}$
\therefore Required probability $=$ Probability of getting two heads and one tail + Probability of all three tails
$={ }^{3} C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{1}+\left(\frac{1}{2}\right)^{3}$
$=3\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{3}$
$=\frac{3}{8}+\frac{1}{8}=\frac{1}{2}$
12
(a)

We have,
$p=$ Probability that the bomb strikes the target $=1 / 2$
Let n be the number of bombs which should be dropped to ensure 99% chance or better of completely destroying the target. Then, the probability that out of n bombs, at least two strike the target, is greater than 0.99
Let X denote the number of bombs striking the target. Then,
$P(X=r)={ }^{n} C_{r}\left(\frac{1}{2}\right)^{r}\left(\frac{1}{2}\right)^{n-r}={ }^{n} C_{r}\left(\frac{1}{2}\right)^{n}, r=0,1,2, \ldots, n$
Now,
$P(X \geq 2) \geq 0.99$
$\Rightarrow\{1-P(X<2)\} \geq 0.99$
$\Rightarrow 1-\{P(X=0)+P(X=1)\} \geq 0.99$
$\Rightarrow 1-\left\{(1+n) \frac{1}{2^{n}}\right\} \geq 0.99$
$\Rightarrow 0.01 \geq \frac{1+n}{2^{n}}$
$\Rightarrow 2^{n}>100+100 n \Rightarrow n \geq 11$
Thus, the minimum number of bombs is 11
13
(b)

The probability of getting head at least once in n times
$=1-P($ None of the trial getting head $)$
$=1-\left(\frac{1}{2}\right)^{n}$
Given $1-\left(\frac{1}{2}\right)^{n}>0.8 \Rightarrow\left(\frac{1}{2}\right)^{n}<0.2$
$\Rightarrow 2^{n}>\frac{1}{0.2} \Rightarrow 2^{n}>5$
Hence, least value of n is 3
14
(b)

Required probability $=P\left(\bar{A}_{1} \cap \bar{A}_{2} \cap \ldots \cap \bar{A}_{n}\right)$
$=P\left(\bar{A}_{1}\right) P\left(\bar{A}_{2}\right) \ldots P\left(\bar{A}_{n}\right)=\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \ldots \cdot \frac{n}{n+1}=\frac{1}{n+1}$
15 (d)
Given, mean $=\Sigma X_{k} P(X=k)=1.3$
$\Rightarrow X_{0} P(X=0)+X_{1}(X=1)+X_{2} P(X=2)$
$+X_{3} P(X=3)=1.3$
$\Rightarrow 0 . P(X=0)+1 . P(X=1)+2 \cdot P(X=2)$
$+3 . P(X=3)=1.3$
$\Rightarrow P(X=1)+2(0.3)+3.2 P(X=1)=1.3$
$\Rightarrow 7 P(X=1)=0.7$
$\Rightarrow P(X=1)=0.1$
Since, $P(X=3)=2 P(X=1)=2(0.1)=0.2$
Also, $P(X=0)+P(X=1)+P(X=2)+P(X=3)=1$
$\Rightarrow P(X=0)+0.1+0.3+0.2=1$
$\Rightarrow P(X=0)=1-0.6=0.4$

16
 (b)

$P($ getting a sum greater than 4)
$=1-P($ getting a sum less than 5$)$
For sum 3, Number of cases=1
For sum 4, Number of cases=3
\therefore Total number of cases $=4$
From Eq.(i),
$P=1-\frac{4}{216}=1-\frac{1}{54}=\frac{53}{54}$
17

(d)

The required probability $=\frac{{ }^{6} C_{2}+{ }^{4} C_{2}}{{ }^{10} C_{2}}=\frac{7}{15}$

18
 (b)

There are two cases arise.
Case I If Ist ball is white, then
$P=\frac{{ }^{3} C_{1}}{{ }^{5} C_{1}} \times \frac{{ }^{2} C_{1}}{{ }^{4} C_{1}}=\frac{6}{20}=\frac{3}{10}$
Case II If Ist ball is red, then
$P=\frac{{ }^{2} C_{1}}{{ }^{5} C_{1}} \times \frac{{ }^{1} C_{1}}{{ }^{4} C_{1}}=\frac{2}{20}=\frac{1}{10}$
\therefore Required probability $=\frac{3}{10}+\frac{1}{10}=\frac{2}{5}$

19
(a)

Let the coin be tossed n times and let X denote the number of heads obtained. Then, $P(X=r)={ }^{n} C_{r}\left(\frac{1}{2}\right)^{n}$
We have,
$P(X=4)=P(X=7) \Rightarrow{ }^{n} C_{4}={ }^{n} C_{7} \Rightarrow n=11$
$\therefore P(X=2)={ }^{11} C_{2}\left(\frac{1}{2}\right)^{11}=\frac{55}{2048}$
20
(b)

We have,
$P(\bar{A} \cap \bar{B})=\frac{1}{3}$
$\Rightarrow P(\overline{A \cup B})=\frac{1}{3} \Rightarrow 1-P(A \cup B)=\frac{1}{3} \Rightarrow P(A \cup B)=\frac{2}{3}$
$\Rightarrow P(A)+P(B)-P(A \cap B)=\frac{2}{3} \Rightarrow p+2 p-\frac{1}{2}=\frac{2}{3} \Rightarrow p=\frac{7}{18}$

