

$$A = \{08, 17, 26, 35, 44\}$$

Let *B* be the event that the product of the digits is zero

$$B = \{00, 01, 02, 03, \dots, 09, 10, 20, 30, 40\}$$

$$\therefore A \cap B = \{8\}$$

: Required probability = $P\left(\frac{A}{B}\right)$

$$=\frac{P(A\cap B)}{P(B)}=\frac{\frac{1}{50}}{\frac{14}{50}}=\frac{1}{14}$$

4 **(a)**

If any number the last digits can be 0,1,2,3,4,5,6,7,8,9. Therefore, last digit of each number can be chosen in 10 ways.

 \therefore The last digit of all numbers can be chosen in 10^n ways. If the last digit is to be 1,3,7, or 9, then none of the numbers can be even or end in 0 or 5. Thus, we have a choice of 4 digits viz. 1,3,7, or 9 with which each of n numbers should end.

So, favourable number of ways $= 4^n$

Hence, required probability $=\frac{4^n}{10^n}=\left(\frac{2}{5}\right)^n$

Consider the following events:

A = A worker receives bonus, B = A worker is skilled.

We have, $P(A) = \frac{30}{100} \text{ and } P(B/A) = \frac{20}{100}$ $\therefore \text{ Required probability } = P(A \cap B) = P(A)P(B/A)$ $\Rightarrow \text{ Required probability } = \frac{30}{100} \times \frac{20}{100} = 0.06$ $6 \quad \text{(d)}$ $\therefore \text{ Required probability } = \frac{{}^{10}C_1 + {}^{6}C_1}{{}^{16}C_1}$ $= \frac{16}{16} = 1$ $7 \quad \text{(c)}$

Let E = Event of getting a head from a coin

F = Event of getting an odd number {1, 3,5}, from a die

$$P(E) = \frac{1}{2}, P(F) = \frac{3}{6} = \frac{1}{2}$$

Since, *E* and *F* are independent events

$$\therefore P(E \cap F) = P(E) \cap P(F) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

8 **(a)**

Probability that at least one shot hits the plane = 1 - P(none of the shot hits the plane)= $1 - 0.6 \times 0.7 \times 0.8 \times 0.9$ = 1 - 0.3024 = 0.69769 (c) Number of favourable cases (*HTH*,*HTH*) = 2 Number of total cases $= 2^3 = 8$ \therefore Required probability $=\frac{2}{8}=\frac{1}{4}$ 10 (c) Consider the following events: E_1 = Selecting first bag E_2 = Selecting second bag A = Getting a ticket bearing number 4 ∴ Required probability = $P((E_1 \cap A) \cup (E_2 \cap A))$ $= P(E_1 \cap A) + P(E_2 \cap A)$ $= P(E_1)P(A/E_1) + P(E_2)P(A/E_2)$ $=\frac{1}{2}\times\frac{1}{4}+\frac{1}{2}\times\frac{1}{6}=\frac{5}{24}$ 11 (b) We have, Required probability = ${}^{6}C_{4}\left(\frac{1}{2}\right)^{6} + {}^{6}C_{5}\left(\frac{1}{2}\right)^{6} + {}^{6}C_{6}\left(\frac{1}{2}\right)^{6} = \frac{11}{32}$

Let *X* denote the number of aces.

Probability of selecting aces,

$$P = \frac{4}{52} = \frac{1}{13}$$

Probability of not selecting aces,

$$q = 1 - \frac{1}{13} = \frac{12}{13}$$

$$P(X = 1) = 2 \times \left(\frac{1}{13}\right) \times \left(\frac{12}{13}\right) = \frac{24}{169}$$

$$P(X = 2) = 2\left(\frac{1}{13}\right)^2 \cdot \left(\frac{12}{13}\right)^0 = \frac{2}{169}$$

$$Mean = \Sigma P_1 X_i = \frac{24}{169} + \frac{2}{169} = \frac{2}{13}$$

$$P(A) = 0.45,$$

$$P(B) = 0.35 \quad (events are mutually exclusive)$$

14 **(b)** Total cases = 4 Correct option = 1 So, probability of correct answer = $\frac{1}{4}$ 15 **(c)** $P(E \cap F) = P(E).P(F)$

Now, $P(E \cap F) = P(E) - P(E \cap F) = P(E)[1 - P(F)]$

$$= P(E).P(F^{c})$$

and $P(E^c \cap F^c) = 1 - P(E \cup F)$

 $= 1 - [P(E) + P(F) - P(E \cap F)$

$$= [1 - P(E)][1 - P(F)] = P(E^{c})P(F^{c})$$

Also P(E/F) = P(E) and $P(E^c/F^c) = P(E^c)$

$$\Rightarrow P(E/F) + P(E^c/F^c) = 1$$

16 **(a)**

One integer can be chosen out of 200 integers in ${}^{200}C_1$ ways. Let *A* be the event that an integer selected is divisible by 6 and *B* that it is divisible by 8

Then,
$$P(A) = \frac{33}{200}$$
, $P(B) = \frac{25}{200}$
and $P(A \cap B) = \frac{8}{200}$
 $\therefore P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $= \frac{33}{200} + \frac{25}{200} - \frac{8}{200} = \frac{1}{4}$
17 (a)
Given, $np = 4$, $npq = 2$
 $\Rightarrow p = q = \frac{1}{2}$, $n = 8$

We know, $P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$

$$\therefore P(X=1) = {}^{8}C_{1} \left(\frac{1}{2}\right)^{7} \left(\frac{1}{2}\right)^{1} = 8 \times \frac{1}{2^{8}} = \frac{1}{32}$$

18 **(b)**

Let *X* be binomial variate with parameter n = 100 and *P*

Since,
$$P(X = 50) = P(X = 51)$$
 [given]
 $\Rightarrow {}^{100}C_{50}p^{50}(1-p)^{50} = {}^{100}C_{51}p^{51}(1-p)^{49}$
 $\Rightarrow \frac{100!}{50!50!} \times \frac{51!49!}{100!} = \frac{p}{1-p}$
 $\Rightarrow \frac{51}{50} = \frac{p}{1-p}$
 $\Rightarrow p = \frac{51}{101}$

19 **(d)**

Total number=90

Number divisible by 6 are {6,12,18,24,30,36,42,48,54,60,66,72,78,84,90} Numbers divisible by 8 are {8,16,24,32,40,48,56,64,72,80,88}

Numbers divisible by 6 and 8 are {24,48,72}

Total number of numbers divisi<mark>ble by</mark> 6 or 8

$$= 15 + 11 - 3 = 23$$

 \therefore Required probability = $\frac{23}{90}$

20 **(a)**

Let A_i denote the event that the number i appears on the die, and let E denote the event that only white balls are drawn. Then,

$$P(A_i) = \frac{1}{6}$$
 and, $P(E/A_i) = \frac{{}^{6}C_i}{{}^{10}C_i}$, $i = 1, 2, ..., 6$

Required probability = P(E)

$$= P\left(\bigcup_{i=1}^{6} (E \cap A_i)\right) = \sum_{i=1}^{6} P(E \cap A_i) = \sum_{i=1}^{6} P(A_i)P(E/A_i)$$
$$= \frac{1}{6}\left\{\frac{6}{10} + \frac{15}{45} + \frac{20}{120} + \frac{15}{210} + \frac{6}{252} + \frac{1}{210}\right\} = \frac{1}{5}$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	А	А	А	С	D	С	А	С	С
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	С	D	В	С	А	А	В	D	А

