CLASS : XIth
DATE :

1
(b)

Total number of ways $=6 \times 6 \times 6$
Favourable number of ways $=6$
\therefore Required probability $=\frac{6}{6 \times 6 \times 6}=\frac{1}{36}$
2
(a)

Given, $P(A)=P(B)=x$
and $P(A \cap B)=P\left(A^{\prime} \cap B^{\prime}\right)=\frac{1}{3}$
$\therefore P\left(A^{\prime} \cap B^{\prime}\right)=1-P(A \cup B)$
$\Rightarrow P(A \cup B)=1-\frac{1}{3}=\frac{2}{3}$
Also, $P(A \cup B)=P(A)+P(B)-P(A) \cap B)$
$\Rightarrow \frac{2}{3}=2 x-\frac{1}{3} \quad[$ from Eq (i)]
$\Rightarrow x=\frac{1}{2}$
3
(a)
$S=\{00,01,02, \ldots, 49\}$
Let A be the event that sum of the digits on the selected ticket is 8 , then
$A=\{08,17,26,35,44\}$
Let B be the event that the product of the digits is zero
$B=\{00,01,02,03, \ldots ., 09,10,20,30,40\}$
$\therefore A \cap B=\{8\}$
\therefore Required probability $=P\left(\frac{A}{B}\right)$

$$
=\frac{P(A \cap B)}{P(B)}=\frac{\frac{1}{50}}{\frac{14}{50}}=\frac{1}{14}
$$

4 (a)

If any number the last digits can be $0,1,2,3,4,5,6,7,8,9$. Therefore, last digit of each number can be chosen in 10 ways.
\therefore The last digit of all numbers can be chosen in 10^{n} ways. If the last digit is to be $1,3,7$, or 9 , then none of the numbers can be even or end in 0 or 5 . Thus, we have a choice of 4 digits viz. 1,3,7, or 9 with which each of n numbers should end.
So, favourable number of ways $=4^{n}$
Hence, required probability $=\frac{4^{n}}{10^{n}}=\left(\frac{2}{5}\right)^{n}$
5 (c)
Consider the following events:
$A=A$ worker receives bonus, $B=A$ worker is skilled.
We have,
$P(A)=\frac{30}{100}$ and $P(B / A)=\frac{20}{100}$
\therefore Required probability $=P(A \cap B)=P(A) P(B / A)$
\Rightarrow Required probability $=\frac{30}{100} \times \frac{20}{100}=0.06$
6
(d)
\therefore Required probability $=\frac{{ }^{10} C_{1}+{ }^{6} C_{1}}{{ }^{16} C_{1}}$
$=\frac{16}{16}=1$
7
(c)

Let $E=$ Event of getting a head from a coin
$F=$ Event of getting an odd number $\{1,3,5\}$, from a die
$P(E)=\frac{1}{2}, P(F)=\frac{3}{6}=\frac{1}{2}$
Since, E and F are independent events
$\therefore P(E \cap F)=P(E) \cap P(F)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$

8 (a)

Probability that at least one shot hits the plane
$=1-P($ none of the shot hits the plane $)$
$=1-0.6 \times 0.7 \times 0.8 \times 0.9$
$=1-0.3024=0.6976$
9
(c)

Number of favourable cases $(H T H, H T H)=2$

Number of total cases $=2^{3}=8$
\therefore Required probability $=\frac{2}{8}=\frac{1}{4}$
10 (c)
Consider the following events:
$E_{1}=$ Selecting first bag
$E_{2}=$ Selecting second bag
$A=$ Getting a ticket bearing number 4
\therefore Required probability $=P\left(\left(E_{1} \cap A\right) \cup\left(E_{2} \cap A\right)\right)$
$=P\left(E_{1} \cap A\right)+P\left(E_{2} \cap A\right)$
$=P\left(E_{1}\right) P\left(A / E_{1}\right)+P\left(E_{2}\right) P\left(A / E_{2}\right)$
$=\frac{1}{2} \times \frac{1}{4}+\frac{1}{2} \times \frac{1}{6}=\frac{5}{24}$
11
(b)

We have,
Required probability $={ }^{6} C_{4}\left(\frac{1}{2}\right)^{6}+{ }^{6} C_{5}\left(\frac{1}{2}\right)^{6}+{ }^{6} C_{6}\left(\frac{1}{2}\right)^{6}=\frac{11}{32}$
12 (c)
Let X denote the number of aces.
Probability of selecting aces,
$P=\frac{4}{52}=\frac{1}{13}$
Probability of not selecting aces,
$q=1-\frac{1}{13}=\frac{12}{13}$
$P(X=1)=2 \times\left(\frac{1}{13}\right) \times\left(\frac{12}{13}\right)=\frac{24}{169}$
$P(X=2)=2\left(\frac{1}{13}\right)^{2} \cdot\left(\frac{12}{13}\right)^{0}=\frac{2}{169}$
Mean $=\Sigma P_{1} X_{i}=\frac{24}{169}+\frac{2}{169}=\frac{2}{13}$
13
(d)
$P(A)=0.45$,
$P(B)=0.35$ (events are mutually exclusive)

$P(A \cap B)=0$
(b)

Total cases $=4$
Correct option = 1
So, probability of correct answer $=\frac{1}{4}$
15
(c)
$P(E \cap F)=P(E) \cdot P(F)$
Now, $P(E \cap F)=P(E)-P(E \cap F)=P(E)[1-P(F)]$
$=P(E) \cdot P\left(F^{c}\right)$
and $P\left(E^{c} \cap F^{c}\right)=1-P(E \cup F)$
$=1-[P(E)+P(F)-P(E \cap F)$
$=[1-P(E)][1-P(F)]=P\left(E^{c}\right) P\left(F^{c}\right)$
Also $P(E / F)=P(E)$ and $P\left(E^{c} / F^{c}\right)=P\left(E^{c}\right)$
$\Rightarrow P(E / F)+P\left(E^{c} / F^{c}\right)=1$
16 (a)
One integer can be chosen out of 200 integers in ${ }^{200} C_{1}$ ways. Let A be the event that an integer selected is divisible by 6 and B that it is divisible by 8

Then, $P(A)=\frac{33}{200}, P(B)=\frac{25}{200}$
and $P(A \cap B)=\frac{8}{200}$
$\therefore P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$=\frac{33}{200}+\frac{25}{200}-\frac{8}{200}=\frac{1}{4}$
17
(a)

Given, $n p=4, n p q=2$
$\Rightarrow p=q=\frac{1}{2}, n=8$
We know, $P(X=r)={ }^{n} C_{r} p^{r} q^{n-r}$
$\therefore P(X=1)={ }^{8} C_{1}\left(\frac{1}{2}\right)^{7}\left(\frac{1}{2}\right)^{1}=8 \times \frac{1}{2^{8}}=\frac{1}{32}$

18 (b)
Let X be binomial variate with parameter $n=100$ and P
Since, $P(X=50)=P(X=51)$ [given]
$\Rightarrow{ }^{100} C_{50} p^{50}(1-p)^{50}={ }^{100} C_{51} p^{51}(1-p)^{49}$
$\Rightarrow \frac{100!}{50!50!} \times \frac{51!49!}{100!}=\frac{p}{1-p}$
$\Rightarrow \frac{51}{50}=\frac{p}{1-p}$
$\Rightarrow p=\frac{51}{101}$
19
(d)

Total number $=90$
Number divisible by 6 are $\{6,12,18,24,30,36,42,48,54,60,66,72,78,84,90\}$
Numbers divisible by 8 are $\{8,16,24,32,40,48,56,64,72,80,88\}$
Numbers divisible by 6 and 8 are $\{24,48,72\}$
Total number of numbers divisible by 6 or 8
$=15+11-3=23$
\therefore Required probability $=\frac{23}{90}$
20
(a)

Let A_{i} denote the event that the number i appears on the die, and let E denote the event that only white balls are drawn. Then,
$P\left(A_{i}\right)=\frac{1}{6}$ and, $P\left(E / A_{i}\right)=\frac{{ }^{6} C_{i}}{{ }^{10} C_{i}}, i=1,2, \ldots, 6$
Required probability $=P(E)$
$=P\left(\bigcup_{i=1}^{6}\left(E \cap A_{i}\right)\right)=\sum_{i=1}^{6} P\left(E \cap A_{i}\right)=\sum_{i=1}^{6} P\left(A_{i}\right) P\left(E / A_{i}\right)$
$=\frac{1}{6}\left\{\frac{6}{10}+\frac{15}{45}+\frac{20}{120}+\frac{15}{210}+\frac{6}{252}+\frac{1}{210}\right\}=\frac{1}{5}$

