CLASS : XIth

Solutions

1
(a)

The required probability is given by
$P\{(A \cap \bar{B}) \cup(\bar{A} \cap B)\}$
$=P(A \cap \bar{B})+P(\bar{A} \cap B)\left[\begin{array}{c}\text { By add. Theorem for mutually } \\ \text { exclusive events }\end{array}\right]$
$=P(A) P(\bar{B})+P(\bar{A}) P(B)[\because A, B$ are independent events $]$
$=P(A)(1-P(B)+(1-(A)) P(B)$
$=P(A)+P(B)-2 P(A) P(B)$
$=P(A)+P(B)-2 P(A \cap B)$
2
(c)

Since, $P(A \cap B)=P(A) P(B)$
$\Rightarrow A$ and B are independent events
$\Rightarrow A^{c}$ and B^{c} will also independent events
Hence, $P(A \cup B)^{c}=P\left(A^{c} \cap B^{c}\right)$
$=P\left(A^{c}\right) P\left(B^{c}\right)$
3
(a)

Sum of Probabilities=1
$\Rightarrow p+2 p+3 p+4 p+5 p+7 p+8 p+9 p$
$+10 p+11 p+12 p=1$
$\Rightarrow 72 p=1 \Rightarrow p=\frac{1}{72}$
4
(b)

Let the total number of students be 100, then in which 60 girls and 40 boys
As 25% of boys offer Mathematics $=\frac{25}{100} \times 40=10$ boys
and 10% of girls offer Mathematics $=\frac{10}{100} \times 60=6$ girls
\therefore Total number of students, whose offers Mathematics is 16
\therefore Required probability $=\frac{6}{16}=\frac{3}{8}$
5 (a)
Let $q=1-p$. Since, head appears first time in an even throw 2 or 4 or 6
$\therefore \frac{2}{5}=q p+q^{3} p+q^{5} p+\ldots$
$\therefore \frac{2}{5}=\frac{q p}{1-q^{2}}$
$\Rightarrow \frac{2}{5}=\frac{(1-p) p}{1-(1-p)^{2}}$
$\Rightarrow \frac{2}{5}=\frac{1-p}{2-p}$
$\Rightarrow 4-2 P=5-5 P \Rightarrow p=\frac{1}{3}$
6
(a)

We have,
$P\left[\left(E_{1} \cup E_{2}\right) \cap\left(\bar{E}_{1}\right) \cap\left(\bar{E}_{2}\right)\right]$
$=P\left[\left(E_{1} \cup E_{2}\right) \cap\left(\bar{E}_{1} \cap \bar{E}_{2}\right)\right]$
$=P\left[\left(E_{1} \cup E_{2}\right) \cap\left(E_{1} \cup E_{2}\right)\right]=P(\phi)=0 \leq 1 / 4$
7
(b)

Given, $P(A \cap B)=\frac{1}{6}$
$\Rightarrow P(A) P(B)=\frac{1}{6}$
and $P(\bar{A} \cap \bar{B})=\frac{1}{3}$
$\Rightarrow P(\bar{A}) P(\bar{B})=\frac{1}{3}$
$\Rightarrow\{1-P(A)\}\{1-P(B)\}=\frac{1}{3}$
$\Rightarrow 1-\frac{1}{3}+P(A) P(B)=P(A)+P(B)$
$\Rightarrow \frac{2}{3}+\frac{1}{6}=P(A)+P(B) \quad[$ from Eq.(i) $]$
$\Rightarrow P(A)+P(B)=\frac{5}{6}$
On solving Eqs. (i) and (ii), we get
$P(A)=\frac{1}{2}, P(B)=\frac{1}{3}$
or $P(A)=\frac{1}{3}, P(B)=\frac{1}{2}$
(a)

We know, total probability distribution is 1 .
$\therefore \frac{1}{10}+k+\frac{1}{5}+2 k+\frac{3}{10}+k=1$
$\Rightarrow \frac{6}{10}+4 k=1$
$\Rightarrow k=\frac{1}{10}$
10
(d)

We have, $p=3 / 4$ and $n=5$
\therefore Required probability
$={ }^{5} C_{3}\left(\frac{3}{4}\right)^{3}\left(\frac{1}{4}\right)^{2}+{ }^{5} C_{4}\left(\frac{3}{4}\right)^{4}\left(\frac{1}{4}\right)+{ }^{5} C_{5}\left(\frac{3}{4}\right)^{5}=\frac{459}{512}$
11
(c)

One red card one queen can be drawn in the following mutually exclusive ways:
(I) By drawing one red card out of 24 red cards (excluding 2 red queens) and one red queen out of 2 red queens. Let this event be A
(II) By drawing one red card out of 26 red cards (including 2 red queens) and one queen out of 2 black queens. Let B
\therefore Required probability $=P(A \cup B)=P(A)+P(B)$
$=\frac{{ }^{24} C_{1} \times{ }^{2} C_{1}}{{ }^{52} C_{2}}+\frac{{ }^{26} C_{1} \times{ }^{2} C_{1}}{{ }^{52} C_{2}}=\frac{50}{663}$
12 (a)
Given, $4 P(A)=6 P(B)=10 P(A \cap B)=1$
$\therefore P\left(\frac{B}{A}\right)=\frac{P(A \cap B)}{P(A)}=\frac{\frac{1}{10}}{\frac{1}{4}}=\frac{2}{5}$
13
(c)

Given, $n p=4, n p q=3 V \Rightarrow p=\frac{1}{4}, q=\frac{3}{4}$
Mode is an integer x such that
$\Rightarrow 4+\frac{1}{4}>x>4-\frac{3}{4}$
$\Rightarrow 3.25<x<4.25 \therefore x=4$
14 (c)
$P\left(\frac{B}{A \cup B^{C}}\right)=\frac{P\left(B \cap\left(A \cup B^{c}\right)\right.}{P\left(A \cup B^{c}\right)}$

$$
\begin{aligned}
& =\frac{P(A \cap B)}{P(A)+P\left(B^{c}\right)-P\left(A \cap B^{c}\right)} \\
& =\frac{P(A)-P\left(A \cap B^{c}\right)}{P(A)+P\left(B^{c}\right)-P\left(A \cap B^{c}\right)} \\
& =\frac{0.7-0.5}{0.8}=\frac{1}{4}
\end{aligned}
$$

15 (b)
The number of ways in which either player can choose a number from 1 to 25 is 25 , so the total number of ways a choosing numbers is $25 \times 25=625$. So, the probability that they will not win a prize in a single trial
$=1-\frac{1}{25}=\frac{24}{25}$
16
(c)

Let X be the number of defective bulbs in a sample of 5 bulbs.
Probability that a bulb is defective $=p=\frac{10}{100}=\frac{1}{10}$
Then, $P(X=r)={ }^{5} C_{r}\left(\frac{1}{10}\right)^{r}\left(\frac{9}{10}\right)^{5-r}$
\therefore Required probability $=P(X=0)={ }^{5} C_{0}\left(\frac{1}{10}\right)^{0}\left(\frac{9}{10}\right)^{5}=\left(\frac{9}{10}\right)^{5}$
17
(b)

We know sum of probability distribution is 1
$\therefore k+2 k+3 k+2 k+k=1$
$\Rightarrow k=\frac{1}{9}$
\therefore Mean, $m=\sum_{i=1}^{5} P_{i} x_{i}$
$=k(1)+2 k(2)+3 k(3)+2 k(4)+k(5)$
$=k(1+4+9+8+5)=\frac{1}{9} \times 27=3$
$\therefore(k, m)=\left(\frac{1}{9}, 3\right)$

18 (d)

\therefore Required probability $=\frac{30+5}{60}=\frac{7}{12}$
(b)

Total number of ways $={ }^{11} C_{5}=462$
Number of ways in which 2 particular girls are included
${ }^{9} C_{3}=84$
\therefore Required probability $=\frac{84}{462}=\frac{2}{11}$
20
(b)

Required probability $=1-P$ (all letters in right envelope)
$=1-\frac{1}{n!}$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | A | C | A | B | A | A | B | A | A | D |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | C | A | C | C | B | C | B | D | B | B |
| | | | | | | | | | | |

