CLASS : XIth
DATE :

Solutions

Topic :-PROBABILITY

1
(a)

Clearly, X is a binomial variate with $p=1 / 2$
$\therefore P(X=r)={ }^{n} C_{r}\left(\frac{1}{2}\right)^{r}\left(\frac{1}{2}\right)^{n-r}={ }^{n} C_{r}\left(\frac{1}{2}\right)^{n}$
It is given that $P(X=4), P(X=5)$ and $P(X=6)$ are in AP
$\therefore 2 P(X=5)=P(X=4)+P(X=6)$
$\Rightarrow 2{ }^{n} C_{5}={ }^{n} C_{4}+{ }^{n} C_{6}$
$\Rightarrow 2=\frac{{ }^{n} C_{4}}{{ }^{n} C_{5}}+\frac{{ }^{n} C_{6}}{{ }^{n} C_{5}}$
$\Rightarrow 2=\frac{5}{n-4}+\frac{n-5}{6}$
$\Rightarrow n^{2}-21 n+98=0 \Rightarrow n=7,14$
2
(b)

Three letters can be placed in 3 envelopes in 3! ways, whereas there is only one way of placing them in their right envelopes. So. Probability that all the letters are placed in the right envelopes $=\frac{1}{3!}$
Hence, required probability $=1-\frac{1}{3!}=\frac{5}{6}$
3
(b)

We have,
Total number of mappings from A to $B=n^{m}$
Number of injective mappings from A to $B={ }^{n} C_{m} \times m$!
Hence, required probability $=\frac{{ }^{n} C_{m} \times m!}{n^{m}}=\frac{n!}{(n-m)!n^{m}}$
4 (c)
Let x be the probability of success in each trial, then $(1-x)$ will be the probability of failure in each trial.
Thus, probability of exactly successes in a series of three trials
$=P\left(\bar{E}_{1} E_{2} E_{3}+E_{1} \bar{E}_{2} E_{3}+E_{1} E_{2} \bar{E}_{3}\right)$
$=(1-x) x \cdot x+x(1-x) x+x \cdot x(1-x)$
$=3 x^{2}(1-x)$
and the probability of three success
$P\left(E_{1} E_{2} E_{3}\right)=x \cdot x \cdot x=x^{3}$
According to question,
$9 x^{3}-3 x^{2}(1-x)$
$\Rightarrow 3 x=1-x$
$\Rightarrow 4 x=1$
$\Rightarrow x=\frac{1}{4}$
Hence, the probability of success in each trial is $\frac{1}{4}$.
5 (d)
Let $E=E=$ Events of numbers divisible by 2 and 3 [ie, divisible by 6]

$$
=(6,12, \ldots, 96)
$$

$n(E)=16$
\therefore Required probability $=\frac{{ }^{16} C_{3}}{{ }^{100} C_{3}}$
$=\frac{\frac{16 \times 15 \times 14}{3 \times 2 \times 1}}{\frac{100 \times 99 \times 98}{3 \times 2 \times 1}}=\frac{4}{1155}$
6 (d)
Probability of getting a Sunday in a week,
$p=\frac{1}{7}, q=\frac{6}{7}$
Required probability $={ }^{5} C_{2}\left(\frac{1}{7}\right)^{2}\left(\frac{6}{7}\right)^{3}=\frac{10 \times 6^{3}}{7^{5}}$
$7 \quad$ (c)
Given that, $n p=12$
and $\sqrt{n p q}=2 \Rightarrow n p q=4$
From Eqs. (i) and (ii), we get
$12 \times q=4 \Rightarrow q=\frac{1}{3}$
and we know that,
$p+q=1 \Rightarrow p=1-\frac{1}{3}=\frac{2}{3}$
8
(c)

Total cases $={ }^{52} C_{4}$
Favourable cases $=\left({ }^{13} C_{1}\right)^{4}$
So, probability $=\frac{\left({ }^{13} C_{1}\right)^{4}}{{ }^{52} C_{4}}$

$$
\begin{aligned}
& =\frac{13 \times 13 \times 13 \times 13 \times 1 \times 2 \times 3 \times 4}{52 \times 51 \times 50 \times 49} \\
& =\frac{2197}{20825}
\end{aligned}
$$

Required probability
$P\left(A_{1} \cap A_{2}^{\prime} \cap A_{3}\right)+P\left(A_{1}{ }^{\prime} \cap A_{2} \cap A_{3}\right)$
$=P\left(A_{1}\right) P\left(A_{2}^{\prime}\right) P\left(A_{3}\right)+P\left(A_{1}^{\prime}\right) P\left(A_{2}\right) P\left(A_{3}\right)$
$=\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{3}$
$=\frac{1}{8}+\frac{1}{8}=\frac{1}{4}$
10
(c)

The last digit of the product will be $1,2,3,4,5,6,7,8$ or 9 if and only if each of the n positive integers ends in any of these digits. Now the probability of an integer ending in $1,2,3,4,5,6,7,8$ or 9 is $\frac{8}{10}$.Therefore the probability that the last digit of the product of n integer in $1,2,3,4,5,6,7,8$ or 9 is $\left(\frac{4}{5}\right)^{n}$. The probability for an integer to end in $1,3,7$ or 9 is $\frac{4}{10}=\frac{2}{5}$
Therefore the probability for the product of n positive integers to end in $1,3,7$ or 9 is $\left(\frac{2}{5}\right)^{n}$
Hence the required probability $=\left(\frac{4}{5}\right)^{n}-\left(\frac{2}{5}\right)^{n}=\frac{4^{n}-2^{n}}{5^{n}}$
11 (d)
Required probability $=P(W B W B)+P(B W B W)$
$=\left(\frac{{ }^{5} C_{1} \times{ }^{3} C_{1} \times{ }^{4} C_{1} \times{ }^{2} C_{1}}{{ }^{8} C_{1} \times{ }^{7} C_{1} \times{ }^{6} C_{1} \times{ }^{5} C_{1}}\right)+\left(\frac{{ }^{5} C_{1} \times{ }^{3} C_{1} \times{ }^{4} C_{1} \times{ }^{2} C_{1}}{{ }^{8} C_{1} \times{ }^{7} C_{1} \times{ }^{6} C_{1} \times{ }^{5} C_{1}}\right)$
$=\frac{1}{14}+\frac{1}{14}=\frac{2}{14}=\frac{1}{7}$
12
(a)

Let X denotes the number of red balls. Here probability of getting red balls, $p=\frac{3}{7}$ and probability of getting red bills, $q=\frac{4}{7}$

1. $\quad P_{1}(X=0)={ }^{3} C_{0}\left(\frac{3}{7}\right)^{0}\left(\frac{4}{7}\right)^{3}=\frac{64}{(7)^{3}}$
2. $\quad P_{2}(X=1)={ }^{3} C_{1}\left(\frac{3}{7}\right)^{1}\left(\frac{4}{7}\right)^{2}=\frac{144}{(7)^{3}}$
3. $\quad P_{3}(X=2)={ }^{3} C_{2}\left(\frac{3}{7}\right)^{2}\left(\frac{4}{7}\right)^{1} \frac{108}{(7)^{3}}$
4. $\quad P_{4}(X=3)={ }^{3} C_{3}\left(\frac{3}{7}\right)^{3}=\frac{27}{(7)^{2}}$
\therefore Variance $=\sum_{i=0}^{3} P_{i} x_{i}^{2}-\left(\sum_{i=0}^{3} P_{i} x_{i}\right)^{2}$
$=\left[\frac{64}{(7)^{3}} \times 0+\frac{144}{(7)^{3}} \times(1)^{2}+\frac{108}{(7)^{3}} \times(2)^{2}+\frac{27}{(7)^{3}} \times(3)^{2}\right]$

$$
\begin{aligned}
& -\left[\frac{64}{(7)^{3}} \times 0+\frac{144}{(7)^{3}} \times 1+\frac{108}{(7)^{3}} \times 2+\frac{27}{(7)^{3}} \times 3\right]^{2} \\
& =\left[0+\frac{144}{343}+\frac{432}{343}+\frac{243}{343}\right]-\left[0+\frac{144}{343}+\frac{216}{343}+\frac{81}{343}\right]^{2} \\
& =\frac{819}{343}-\left(\frac{441}{343}\right)^{2} \\
& =\frac{280917-194481}{(343)^{2}}=\frac{36}{49}
\end{aligned}
$$

Now, standard deviation $=\sqrt{\text { variance }}$
$=\sqrt{\frac{36}{49}}=\frac{6}{7}$
13 (c)
Since, $n(n+1) P=\frac{101}{3}$ is not an integer
Therefore, $P(X=r)$ is maximum when $r=\left[\frac{101}{3}\right]=33$
14 (c)
We have,
$p=$ Probability that a bulb is defective $=\frac{5}{20}=\frac{1}{4}$
$\therefore q=1-p=1-\frac{1}{4}=\frac{3}{4}$
Let X denote the number of defective bulbs in a sample of 3 bulbs. Then, X is a binomial variate with parameter $n=3$ and $p=\frac{1}{4}$ such that
$P(X=r)={ }^{3} C_{r}\left(\frac{1}{4}\right)^{r}\left(\frac{3}{4}\right)^{3-r}$
$\Rightarrow P(X=2)={ }^{3} C_{2}\left(\frac{1}{4}\right)^{2}\left(\frac{3}{2}\right)=\frac{9}{64}$
15 (a)
Given, $n p=3=\sqrt{n p q}=\frac{3}{2}$
$\Rightarrow q=\frac{n p q}{n p}=\frac{9}{4 \times 3}=\frac{3}{4}$
$\Rightarrow p=1-\frac{3}{4}=\frac{1}{4}$
Also, $n p=3 \Rightarrow n=12$
Hence, binomial distribution is
$(q+p)^{n}=\left(\frac{3}{4}+\frac{1}{4}\right)^{12}$

16 (d)

Since each element of a determinant of order 2 can be 0 or 1 . Therefore, the total number of determinants with entries 0 or 1 is $2^{4}=16$. Out of these 16 determinants, there are 3 positive and 3 negative
$\therefore P(A)=P(B)=\frac{3}{16} \neq \frac{1}{2}$
17
(a)
$P\left(\frac{B}{A}\right)=\frac{P(A \cap B)}{P(A)}$
$\therefore \frac{1}{15}=\frac{P(A \cap B)}{\frac{1}{12}}$
$\Rightarrow P(A \cap B)=\frac{1}{180}$
Also, $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$\Rightarrow P(A \cup B)=\frac{1}{12}+\frac{5}{12}-\frac{1}{180}=\frac{89}{180}$
19

(b)

We have,
$n p=20$ and $n p q=4 \Rightarrow q=\frac{1}{5} \Rightarrow p=\frac{4}{5}$
Now, $n p=20 \Rightarrow n=25$
20
(d)

Let A be the event of obtaining an even sum and B be the event of obtaining a sum less five.
Then, we have to find $P(A \cup B)$.Since, A, B are not mutually exclusive, we have
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$=\frac{18}{36}+\frac{6}{36}-\frac{4}{36}$

$$
=\frac{5}{9}
$$

[Since, there are 18 ways to get an even sum and 6 ways to get a sum less than 5 ie. $(1,3),(3,1)$, $(2,2),(1,2),(2,1),(1,1)$
and 4 ways to get an even sum less than 5 , ie, $(1,3),(3,1),(2,2),(1,1)$.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	B	B	C	D	D	C	C	B	C
Q.	11	12	13	14	15	16	17	18	19	20
A.	D	A	C	C	A	D	A	C	B	D

