CLASS : XIth

1
(a)

Since the given distribution is a probability distribution
$\therefore 0+2 p+2 p+3 p+p^{2}+2 p^{2}+7 p^{2}+2 p=1$
$\Rightarrow 10 p^{2}+9 p-1=0 \Rightarrow(10 p-1)(p+1)=0 \Rightarrow p=1 / 10$
2 (a)
We have,
$P(E \cap F)=\frac{1}{12}$ and $P(\bar{E} \cap \bar{F})=\frac{1}{2}$
$\Rightarrow P(E) P(F)=\frac{1}{12}$ and $P(\bar{E}) P(\bar{F})=\frac{1}{2}$
[ $\because E$ and $F$ are independent events]
$\Rightarrow P(E) P(F)=\frac{1}{12}$ and $\{1-P(E)\}\{1-P(F)\}=\frac{1}{2}$
$\Rightarrow P(E) P(F)=\frac{1}{12}$ and $1-\{P(E)+P(F)\}+P(E) P(F)=\frac{1}{2}$
$\Rightarrow P(E) P(F)=\frac{1}{12}$ and $1-\{P(E)+P(F)\}+\frac{1}{12}=\frac{1}{2}$
$\Rightarrow P(E) P(F)=\frac{1}{12}$ and $P(E)+P(F)=\frac{7}{12}$
The quadratic equation having $P(E)$ and $P(F)$ as its roots is
$x^{2}-\{P(E)+P(F)\} x+P(E) P(F)=0$
$\Rightarrow x^{2}-\frac{7}{12} x+\frac{1}{12}=0 \Rightarrow x=\frac{1}{3}, \frac{1}{4}$
$\therefore P(E)=\frac{1}{3}$ and $P(F)=\frac{1}{4}$ or, $P(E)=\frac{1}{4}$ and $P(F)=\frac{1}{3}$
3 (a)
We have,
$p=$ Probability of getting at least 3 in a throw $=\frac{4}{6}=\frac{2}{3}$
$\therefore q=1-p=\frac{1}{3}$
Required probability
$={ }^{6} C_{3}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)^{3}+{ }^{6} C_{4}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{2}+{ }^{6} C_{5}\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right)+{ }^{6} C_{6}\left(\frac{2}{3}\right)^{6}$

$$
=41 \times \frac{2^{4}}{3^{6}}
$$

4 (c)
Given $P(A \cup B)=0.6, P(A \cap B)=0.3$
$\therefore P\left(A^{\prime}\right)+P\left(B^{\prime}\right)$
$=1-P(A)+1-P(B)=2-\{P(A)+P(B)\}$
$=2-\{P(A \cup B)+P(A \cap B)\}$
$=2-\{0.6+0.3\}=2-0.9=1.1$
6
(c)

Given, $P(A)=\frac{1}{3}, P(B)=\frac{1}{3}$ and $P(C)=\frac{1}{4}$
$\therefore P\left(A^{\prime}\right)=\frac{2}{3}, P\left(B^{\prime}\right)=\frac{2}{3}$ and $P\left(C^{\prime}\right)=\frac{3}{4}$
Now, $P\left(A^{\prime} \cap B^{\prime} \cap C^{\prime}\right)=P\left(A^{\prime}\right) P\left(B^{\prime}\right) P\left(C^{\prime}\right)$
$[\because A, B$ and $C$ are independent events]
$=\frac{2}{3} \times \frac{2}{3} \times \frac{3}{4}=\frac{1}{3}$
7
(c)

Total number of elementary events $=6^{3}=216$
Favourable number of elementary events
$=$ Coeff. of $x^{15}$ in $\left(x^{1}+x^{2}+x^{3}+\ldots+x^{6}\right)^{3}$
$=$ Coeff. of $x^{15}$ in $x^{3}\left(\frac{1-x^{6}}{1-x}\right)^{3}$
$=$ Coeff. of $x^{12}$ in $\left(1-3 x^{6}+3 x^{12}-x^{18}\right)(1-x)^{-3}$
$=$ Coeff. of $x^{12}$ in $(1-x)^{-3}-3$ Coeff. of $x^{6}$ in $(-x)^{-3}$
+3 Coeff. of $x^{0}$ in $(1-x)^{-3}$
$={ }^{12+3-1} C_{3-1}-3 \times{ }^{6+3-1} C_{3-1}+3={ }^{14} C_{2}-3$
$={ }^{14} C_{2}-3 \times{ }^{8} C_{2}+3=91-84+3=10$
So, required probability $=\frac{10}{216}=\frac{5}{108}$
8
(d)

For a Poisson distribution, mean $=$ variance
$\Rightarrow$ Variance $=16$
$\therefore$ Standard deviation $=\sqrt{\text { Variance }}$
$=\sqrt{16}=4$
$9 \quad$ (a)
The sum of two numbered on a dice is odd only, whence once is odd and second is even.
$\therefore$ Required probability
$=2 \times$ probability of odd number
$\times$ probability of even number
[ $\because$ Here, we multiply by 2 because either the even number is on first or second dice.]
$=2 \times\left(\frac{5}{6}\right) \times\left(\frac{1}{6}\right)=\frac{5}{18}$
10 (b)

In binomial distribution, variance $=n p q$ and mean $=n p$.
From the given condition
$n p q=3$ and $n p=4$
$\therefore \frac{n p q}{n p}=\frac{3}{4}$
$\Rightarrow q=\frac{3}{4}, p=\frac{1}{4}$ and $n=16$
Probability of exactly six success $={ }^{16} C_{6}\left(\frac{1}{4}\right)^{6}\left(\frac{3}{4}\right)^{10}$

## 11 <br> (a)

Since $A$ and $B$ are independent events
$\therefore P(A \cap B)=\frac{1}{6}$ and $P(\bar{A} \cap \bar{B})=\frac{1}{3}$
$\Rightarrow P(A) P(B)=\frac{1}{6}$ and $P(\bar{A}) P(\bar{B})=\frac{1}{3}$
$\Rightarrow P(A) P(B)=\frac{1}{6}$ and $\left\{(1-P(A)\}\left\{(1-P(B)\}=\frac{1}{3}\right.\right.$
$\Rightarrow 1-[P(A)+P(B)]+\frac{1}{6}=\frac{1}{3}$
$\Rightarrow P(A)+P(B)=\frac{5}{6}$
Solving $P(A) P(B)=\frac{1}{6}$ and $P(A)+P(B)=\frac{5}{6}$, we get $P(A)=\frac{1}{2}$ and $P(B)=\frac{1}{3}$ or, $P(A)=\frac{1}{3}$ and $P(B)=\frac{1}{2}$
Hence, option (a) is correct
12 (b)
Since, $A$ and $B$ are independent events
$\therefore P(A) P(B)=\frac{1}{6}$ and $P(\bar{A}) P(\bar{B})=\frac{1}{3}$
$\Rightarrow[1-P(A)][1-P(B)]=\frac{1}{3}$
$\Rightarrow 1-[P(A)+P(B)]+P(A) P(B)=\frac{1}{3}$
$\Rightarrow 1+\frac{1}{6}-\frac{1}{3}=P(A)+P(B)$
$\Rightarrow P(A)+P(B)=\frac{5}{6}$
$\Rightarrow P(A)=\frac{1}{2}, P(B)=\frac{1}{3}$,
or $P(A)=\frac{1}{3}, P(B)=\frac{1}{2}$
13
(a)
$7^{1}=7,7^{2}=49,7^{3}=343,7^{4}=2401, \ldots$.
Therefore, for $7^{r}, r \in N$ the no. ends at unit place $7,9,3,1,7, \ldots .$.
$\therefore 7^{m}+7^{n}$ will be divisible by 5 , if it end at 5 or 0 .
But it cannot end at 5 .

Also it cannot end at 0 .
For this $m$ and $n$ should be as follows :

|  | $m$ | $n$ |
| :--- | :--- | :--- |
| 1 | $4 r$ | $4 r+2$ |
| 2 | $4 r+1$ | $4 r+3$ |
| 3 | $4 r+2$ | $4 r$ |
| 4 | $4 r+3$ | $4 r+1$ |

For any given value of $m$, there will be 25 values of $n$. Hence, the probability of the required event
is $\frac{100 \times 25}{100 \times 100}=\frac{1}{4}$.
14
(c)

A dice is thrown thrice, $n(S)=6 \times 6 \times 6$
Favorable events of $\omega^{r_{1}}+\omega^{r_{2}}+\omega^{r_{3}}=0$
ie, $\left(r_{1}, r_{2}, r_{3}\right)$ are ordered triplets which can take values,
$(1,2,3),(1,5,3),(4,2,3),(4,5,3)\}$
$(1,2,6),(1,5,6),(4,2,6),(4,5,6)\}$
$i e, 8$ ordered triplets and each can be arranged in 3 ! ways $=6$
$\therefore n(E)=8 \times 6$
$\Rightarrow P(E)=\frac{8 \times 6}{6 \times 6 \times 6}$
$=\frac{2}{9}$
15
(c)

We have,
Total number of functions from $A$ to itself $=n^{n}$
Out of these functions, $n$ ! Function are injections
So, required probability $=\frac{n!}{n^{n}}=\frac{(n-1)!}{n^{n-1}}$

## 16 <br> (d)

Let $A_{i}(i=1,2,3,4)$ be the event that the urn contains $2,3,4$ or 5 white balls and E the event that two white balls are drawn. Since the four events $A_{1}, A_{2}, A_{3}, A_{4}$ are equally likely. Therefore, $P\left(A_{i}\right)=\frac{1}{4}$, i

$$
=1,2,3,4
$$

We have,
$P\left(E / A_{1}\right)=$ Prob. that the urn contains 2 white balls and both have been drawn
$\Rightarrow P\left(E / A_{1}\right)=\frac{{ }^{2} C_{2}}{{ }^{5} C_{2}}=\frac{1}{10}$
Similarly, we have
$P\left(E / A_{2}\right)=\frac{{ }^{3} C_{2}}{{ }^{5} C_{2}}=\frac{3}{10}, P\left(E / A_{3}\right)=\frac{{ }^{4} C_{2}}{{ }^{5} C_{2}}=\frac{3}{5}, P\left(E / A_{4}\right)=\frac{{ }^{5} C_{2}}{{ }^{5} C_{2}}=1$
Required probability $=P\left(A_{4} / E\right)=\frac{P\left(A_{4}\right) P\left(E / A_{4}\right)}{\sum_{i=1}^{4} P\left(A_{i}\right) P\left(E / A_{i}\right)}$

$$
=\frac{\frac{1}{4} \times 1}{\frac{1}{4}\left(\frac{1}{10}+\frac{3}{10}+\frac{3}{5}+1\right)}=\frac{1}{2}
$$

## 17 <br> (b)

There are 11 letters in word 'PROBABILITY' out of which 1 can be selected in ${ }^{11} C_{1}$ ways.
There are four vowels viz. $A, I, O$. Therefore,
Number of ways of selecting a vowel $={ }^{4} C_{1}=4$
Hence, required probability $=\frac{4}{11}$
18
(b)

If the show a six, then number of outcomes $=8$
If die not show a six. Then number of outcomes $=2$
$\therefore$ Sample space $=1 \times 8+2 \times 5=18$ points
19
(c)

Given, $n=6$ and
$P(X=2)=9 P(X=4)$
$\Rightarrow{ }^{6} C_{2} p^{2} q^{4}=9 .{ }^{6} C_{4} p^{4} q^{2}$
$\Rightarrow 9 p^{2}=q^{2}$
$\Rightarrow P=\frac{1}{3} q$
$\therefore$ We know that $p+q=1$
$\Rightarrow \frac{q}{3}+q=1$
$\Rightarrow q=\frac{3}{4}$ and $p=\frac{1}{4}$
$\therefore$ Variance $=n p q$
$=6 \cdot \frac{1}{4} \cdot \frac{3}{4}=\frac{9}{8}$
20
(a)

Required probibility $=\frac{{ }^{5} C_{1} \times{ }^{8} C_{1}}{{ }^{13} C_{2}}+\frac{{ }^{5} C_{2}}{{ }^{13} C_{2}}=\frac{25}{39}$

| ANSWER-KEY |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | A | A | A | C | A | C | C | D | A | B |
|  |  |  |  |  |  |  |  |  |  |  |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | A | B | A | C | C | D | B | B | C | A |
|  |  |  |  |  |  |  |  |  |  |  |

