

CLASS : XIth
DATE :
SUBJECT : MATHS
DPP NO. :3

Topic:-permutations and combinations							
1. the			rmed (the words need n the first letter is E and t c) 56	not be meaningful) using the last letter is R, is $d) \frac{11!}{3!2!2!}$			
2. A person goes for an examination in which there are four papers with a maximum of m marks from each paper. The number of ways in which one can get $2m$ marks, is							
	a) $2m + 1$		b) $\frac{1}{3}(m+1)(2m^2+m+1)$				
	c) $\frac{1}{3}(m+1)(2m^2+4m+3)$		d) None of the above				
3. A father with 8 children takes them 3 at a time to the zoological gardens, as often as he can without taking the same 3 children together more than once. The number of times he will go the garden, is							
	a) 336	b) 112	c) 56	d) None of these			
4. A question paper is divided into two parts <i>A</i> and <i>B</i> and each part contain 5 questions. The number of ways in which a candidate can answer 6 questions selecting at least two questions from each part is							
	a) 80	b) 100	c) 200	d) None of these			
5.	Number if divisors of the form $(4n + 2), n \ge 0$ of the integer 240 is						
	a) 4	b)8	c) 10	d)3			
6.	The number of ways that 8 beads of different colours be strung as a necklace is						
	a) 2520	b) 2880	c) 5040	d)4320			
7. app	The number of arrangements of the letters of the word BANANA in which the two N's do not opear adjacently, is						
	a) 40	b) 60	c) 80	d) 100			
8.	The ten's digit in $1! + 4$!! + 7! + 10! + 12! + 13!	7! + 10! + 12! + 13! + 15! + 16! + 17! is divisible by				
	a) 4	b) 3!	c) 5	d)7			

oruc	.1 13							
	a) $^{52}C_{13}$	b) ⁵² C ₄	c) $\frac{52!}{(13!)^4}$	$d)\frac{52!}{(13!)^44!}$				
10. The sides <i>AB</i> , <i>BC</i> , <i>CA</i> of a triangle <i>ABC</i> have 3, 4 and 5 interior points respectively on them. The								
total number of triangles that can be constructed by using these points as vertices is								
a) 220 b) 204 c) 205 d) 195								
	a) 220	0)204	C) 203	u)175				
11.	1. ${}^{n}P_{r} = 3024$ and ${}^{n}C_{r} = 126$, then r is							
	a) 5	b) 4	c) 3	d) 2				
	25							
	2. The value of ${}^{35}C_8 + \sum_{r=1}^7 {}^{42-r}C_7 + \sum_{s=1}^5 {}^{47-s}C_{40-s}$, is							
	a) $^{46}C_7$	b) ⁴⁶ C ₈	c) $^{47}C_7$	d) $^{47}C_8$				
12	13. In 0.65, the number of ways in which A_1 and A_2 are part to each other is							
	13. In Q.65, the number of ways in which A_1 and A_2 are next to each other is							
	a) 9!	b) 2 (9!)	c) $\frac{1}{2}$ (9!)	d) None of these				
14. The number of arrangements which can be made using all the letters of the world I AUCH: I the								
14. The number of arrangements which can be made using all the letters of the word <i>LAUGH</i> , if the vowels are adjacent, is								
	•	b) 24	a) 40	4) 120				
	a) 10	b) 24	c) 48	d)120				
15.	How many ways are th	ree to arrange the letters	s in the word 'GARDEN'	with the vowels in				
15. How many ways are three to arrange the letters in the word 'GARDEN' with the vowels in alphabetical order?								
	a) 120	b) 240	c) 360	d)480				
	, == -			-,				
16.	7 relatives of a man cor	npri <mark>se 4 l</mark> adies and 3 ger	ntlemen his wife has also	7 relatives, 3 of them				
are ladies and 4 gentlemen. In how many ways can they invite a dinner party of 3 ladies and 3								
gent	clemen so that there are	3 of man's relative and	3 of the wife's relative?					
_	a) 485	b) 500	c) 486	d) 102				
	There are <i>n</i> -points in a these points?	plane of which <i>p</i> points	are collinear. How many	lines can be formed				
	•							
	a) ${}^{n}C_{2} - {}^{p}C_{2} + 1$	b) ${}^{n}C_2 - {}^{p}C_2$	c) $n - {}^{p}C_{2}$	$\mathrm{d})^n C_2 - {}^p C_2 - 1$				
19. How many numbers between 5000 and 10,000 can be formed using the digits 1,2,2,4,5,6,7,9,0								
18. How many numbers between 5000 and 10,000 can be formed using the digits 1,2,3,4,5,6,7,8,9, each digit appearing not more than once in each number?								
	0 11 0			4) T L \ 8C				
	a) $5 \times {}^{8}P_{3}$	DJ5 × °C ₈	c) 5! \times ${}^{8}C_{3}$	a)5! x °C ₃				
19. The number of ways in which 20 one rupee coins can be distributed among 5 people such that								
each person, gets at least 3 rupees, is								
	a) 26	b) 63	c) 125	d) None of these				
	- , -	,	-,	-,				
20.	D. The maximum number of points of intersection of 6 circles is							

9. The number of ways in which a pack of 52 cards be divided equally amongst four players in

