CLASS : XIth
SUBJECT : MATHS
DATE :
DPP NO. :2

Topic :-PERMUTATIONS AND COMBINATIONS

1. If ${ }^{n} C_{r}$ denotes the number of combinations of n things takes r at a time, then the expression ${ }^{n}$ $C_{r+1}+{ }^{n} C_{r-1}+2 \times{ }^{n} C_{r}$, equals
a) ${ }^{n+2} C_{r}$
b) ${ }^{n+2} C_{r+1}$
c) ${ }^{n+1} C_{r}$
d) ${ }^{n+1} C_{r+1}$
2. If $\frac{2}{9!}+\frac{2}{3!7!}+\frac{1}{5!5!}=\frac{2^{a}}{b!}$, where $a, b, \in N$, then the ordered pair (a, b) is
a) $(9,10)$
b) $(10,9)$
c) $(7,10)$
d) $(10,7)$
3. The number of diagonals that can be drawn by joining the vertices of an octagon is
a) 28
b) 48
c) 20
d) None of these
4. A father with 8 children takes 3 at a time to the zoological garden, as often as he can without taking the same 3 children together more than once. The number of times he will go to the garden, is
a) 112
b) 56
c) 336
d) None of these
5. If ${ }^{189} C_{35}+{ }^{189} C_{x}={ }^{190} C_{x}$, then x is equal to
a) 34
b) 35
c) 36
d) 37
6. The number of ways in which n ties can be selected from a rack displaying $3 n$ different ties is
a) $\frac{3 n!}{2 n!}$
b) $3 \times n$!
c) $(3 n)$!
d) $\frac{3 n!}{n!2 n!}$
7. The number of permutations of 4 letters that can be made out of the letters of the word EXAMINATION is
a) 2454
b) 2452
c) 2450
d) 1806
8. The number of ways in which 5 boys and 5 girls can be seated for a photograph so that no two girls sit next to each other is
a) $6!.5$!
b) $(5!)^{2}$
c) $\frac{10!}{(5!)}$
d) $\frac{10!}{(5!)^{2}}$
9. The number of diagonals of a polygon of 20 sides is
a) 210
b) 190
c) 180
d) 170
10. The value of ${ }^{47} C_{4}+\sum_{r=1}^{5}{ }^{52-r} C_{3}$ is equal to
a) ${ }^{47} C_{6}$
b) ${ }^{52} C_{5}$
c) ${ }^{53} C_{4}$
d) None of these
11. In how many ways can 21 English and 19 Hindi books be placed in a row so that no two Hindi books are together?
a) 1540
b) 1450
c) 1504
d) 1405
12. In a group of boys, two boys are brothers and in this group, 6 more boys are there. In how many ways, they can sit if the brothers are not to sit alongwith each other :
a) 4820
b) 1410
c) 2830
d) None of these
13. All possible four-digit numbers are formed using the digits $0,1,2,3$ so that no number has repeated digits. The number of even number among them is
a) 9
b) 18
c) 10
d) None of these
14. In how many ways can 4 prizes be distributed among 3 students, if each students can get all the 4 prizes?
a) 4 !
b) 3^{4}
c) $3^{4}-1$
d) 3^{3}
15. In a chess tournament where the participants were to play one game with one another, two players fell ill having played 6 games each, without playing among themselves. If the total number of games is 117 , then the number of participants at the beginning was
a) 15
b) 16
c) 17
d) 18
16. How many even numbers of 3 different digits can be formed from the digits $1,2,3,4,5,6,7,8,9$ (repetition of digits is not allowed)?
a) 224
b) 280
c) 324
d) None of these
17. If a denotes the number of permutations of $x+2$ things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of permutations of $x-11$ things taken all at a time such that $a=182 b c$, then the value of x is
a) 15
b) 12
c) 10
d) 18
18. Eleven books consisting of 5 Mathematics, 4 physics and 2 Chemistry are places on a shelf. The number of possible ways of arranging them on the assumption that the books of the same subject are all together, is
a) $4!2!$ b)
11!c)
$5!4!3!2!d)$
None of these
19. The number of mappings (functions) from the set $A=\{1,2,3\}$ into the set
$B=\{1,2,3,4,5,6,7\}$ such that $f(i) \leq f(j)$ whenever $i<j$, is
a) 84
b) 90
c) 88
d) None of these
20. The number of ordered triplets of positives integers which are solutions of the equations of the equation $z+y+z=100$, is
a) 6005
b) 4851
c) 5081
d) None of these
