CLASS : XIth
DATE :

Solutions

SUBJECT : MATHS
DPP NO. :9

TOpic :-PERMUTATIONS AND COMBINATIONS

1 (c)
We have the following possibilities:
Number of selections Number of Arrangements

$$
\begin{array}{lc}
{ }^{3} C_{1} \times{ }^{2} C_{2} & { }^{3} C_{1} \times{ }^{2} C_{2} \times \frac{5!}{3!}=60 \\
{ }^{3} C_{2} \times{ }^{1} C_{1} & { }^{3} C_{2}+{ }^{1} C_{1} \times \frac{5!}{2!2!}=90
\end{array}
$$

Three bottles of one type and two distinct. Two bottles of one type, two bottles of second type and one from the remaining.
Hence, required number of ways $=60+90=150$
2 (a)
Six ' + ' signs can be arranged in a row in $\frac{6!}{6!}=1$ way. Now, we are left with seven places in which 4 minus signs can be arranged in
${ }^{7} C_{4} \times \frac{4!}{4!}=35$
3
(b)
\because The candidate is unsuccessful, if he fails in 9 or 8 or 7 or 6 or 5 papers.
\therefore Numbers of ways to be unsuccessful
$={ }^{9} C_{9}+{ }^{9} C_{8}+{ }^{9} C_{7}+{ }^{9} C_{6}+{ }^{9} C_{5}$
$={ }^{9} C_{0}+{ }^{9} C_{1}+{ }^{9} C_{2}+{ }^{9} C_{3}+{ }^{9} C_{4}$
$=\frac{1}{2}\left({ }^{9} C_{0}+{ }^{9} C_{1}+\ldots \ldots .+{ }^{9} C_{9}\right)$
$=\frac{1}{2}\left(2^{9}\right)=2^{8}=256$
4
(d)

Using the digits $0,1,2, \ldots \ldots, 9$ the number of five digits telephone numbers which can be formed is 10^{5} (since repetition is allowed).

The number of five digits telephone numbers, which have none of digits repeated $={ }^{10} P_{5}=30240$
\therefore The required number of telephone number
$=10^{5}-30240=69760$

$5 \quad$ (d)

The number of words beginning with ' a ' is same as the number of ways of arranging the remaining 4 letters taken all at a time. Therefore ' a ' will occur in the first place $4!$ times. Similarly, b or c will occur in the first place the same number of times. Then, d occurs in the first place. Now, the number of words beginning with ' $d a, d b$ or $d c^{\prime}$ is 3 !. Then, the words beginning with ' $d e^{\prime}$ must follow. The first one is 'de abc', the next one is 'de acb' and the next to the next comes 'de bac'.
So, the rank of 'de bac' $=3 \cdot 4!+3 \cdot 3!+3=93$
6
(b)

Required number $=2{ }^{20} C_{2}$
$7 \quad$ (c)
The total number of combinations which can be formed of five different green dyes, taking one or more of them is $2^{5}-1=31$. Similarly, by taking one or more of four different red dyes $2^{4}-1=15$ combinations can be formed. The number of combinations which can be formed of three different red dyes, taking none, one or more of them is $2^{3}=8$
Hence, the required number of combinations of dyes
$=31 \times 15 \times 8=3720$
8
(b)

We observe that
4 lines intersect each other in ${ }^{4} C_{2}=6$ points
4 circles intersect each other in ${ }^{4} C_{2} \times 2=12$ points
A line cuts a circle in 2 points
$\therefore 4$ lines will cut four circles into $2 \times 4 \times 4=32$ points
Hence, required number of points $=6+12+32=50$
$9 \quad$ (a)
From the given relation it is evident that ${ }^{n} C_{r}$ is the greatest among the values ${ }^{n} C_{0},{ }^{n} C_{1}, \ldots,{ }^{n} C_{n}$
We know that ${ }^{n} C_{r}$ is greatest for $r=\frac{n}{2}$. Hence, $r=\frac{n}{2}$

10 (d)

A committee may consists of all men and no women or all women and no men or 3 men and 1 women whose is not among wives of 3 chosen men or, 2 men and 2 women who are not are not among the wives of 2 chosen men or 1 men and 3 women none of whom is wife of chosen men
\therefore Required number of committees
$={ }^{4} C_{4}+{ }^{4} C_{4}+{ }^{4} C_{3} \times{ }^{1} C_{1}+{ }^{4} C_{2} \times{ }^{2} C_{2}+{ }^{4} C_{1} \times{ }^{3} C_{3}=16$

11
 (d)

The women choose the chairs amongst the chairs marked 1 to 4 in ${ }^{4} P_{2}$ ways and the men can select the chairs from remaining in ${ }^{6} P_{3}$ ways

Total number of ways $={ }^{4} P_{2} \times{ }^{6} P_{3}$

12
 (a)

Let n be the number of diagonals of a polygon.

Then, ${ }^{n} C_{2}-n=44$
$\Rightarrow \frac{n(n-1)}{2}-n=44$
$\Rightarrow n^{2}-3 n-88=0$
$\Rightarrow n=-8$ or 11
$\therefore n=11$

13
(b)

In the word 'exercises' there are 9 letters of which 3 are e^{\prime} s and 2 are $s^{\prime} \mathrm{s}$
So, required number of permutations $=\frac{9!}{3!2!}=30240$
14
(b)

Total number of functions
$=$ Number of dearrangement of 5 objects

$$
=5!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}\right)=44
$$

15
 (a)

The total number of ways in which words with five letters are formed from given 10 letters $=10^{5}$

$$
=100000
$$

Total number of ways in which words with five letters are formed (no repetition)

$$
=10 \times 9 \times 8 \times 7 \times 6=30240
$$

\therefore Required number of ways $=100000-30240=69760$

17
 (d)

We have,
Required number of numbers $=$ Number of three digit numbers divisible by $5+$ number of 4 digit numbers divisible by 5
$={ }^{3} C_{2} \times 2!\times 1+\left({ }^{3} C_{3} \times 3!\right) \times 1=6+6=12$
19
(c)

In 8 squares $6 x$ can be placed in 28 ways but there are two methods in which there is no x in first or last row.
\therefore required number of ways $=28-2=26$
20
(d)

Total number of points on a three lines are $m+n+k$
\therefore maximum number of triangles
$={ }^{m+n+k} C_{3}-{ }^{m} C_{3}-{ }^{n} C_{3}-{ }^{k} C_{3}$
(subtract those triangles in which point on the same line)

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | C | A | B | D | D | B | C | B | A | D |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | D | A | B | B | A | B | D | C | C | D |
| | | | | | | | | | | |

