CLASS : XIth
DATE :

Solutions

SUBJECT : MATHS
DPP NO. :8

TOpic :-PERMUTATIONS AND COMBINATIONS

1
(a)

Total number of words
= Number of arrangements of the letters of the word 'MATHEMATICS'
$=\frac{11!}{2!2!2!}$
2
(c)

We have,
$P_{m}={ }^{m} P_{m}=m!$
$\therefore 1+P_{1}+2 \cdot P_{2}+3 \cdot P_{3}+\ldots+n \cdot P_{n}$
$=1+1+2 \cdot 2!+3 \cdot 3!+\ldots+n \cdot n!$
$=1+\sum_{r=1}^{n} r \cdot(r!)=1+\sum_{r=1}^{n}\{(r+1)-1\} r!$
$=1+\sum_{r=1}^{n}[(r+1)!-r!]$
$=1+\{(2!-1!)+(3!-2!)+(4!-3!)+\ldots+((n+1)!-n!)\}$
3
(a)
$\because \quad \frac{n(n-3)}{2}=54$
$\Rightarrow \quad n^{2}-3 n-108=0$
$\Rightarrow \quad(n-12)(n+9)=0$
$\Rightarrow \quad n=12 \quad[\because n \neq-9]$
4 (c)
In all, we have 8 squares in which 6 ' X ' have to be placed and It can be done in ${ }^{8} C_{6}=28$ ways.
But this includes the possibility that either the top or horizontal row does not have any ' X '. Since, we want each row must have at least one ' X ', these two possibilities are to be excluded.

Hence, required number of ways $=28-2=26$

5 (c)

We have, 11 letters, viz. $A, A ; I, I ; N, N ; E, X ; M ; T ; O$
For groups of 4 we may arrange these as follows:
(i) Two alike, two others alike
(ii) Two alike, two different
(iii) all four different
(i) gives rise ${ }^{3} C_{2}$ selections, (ii) gives rise $3 \times{ }^{7} C_{2}$ selection and (iii) gives rise ${ }^{8} C_{4}$ selections

So, the number of permutations
$=3 \frac{4!}{2!2!}+63 \frac{4!}{2!}+70.4!=2454$
6
(b)

There are total $20+1=21$ persons. The two particular persons and the host be taken as one unit so that these remain $21-3+1=19$ persons be arranged in round table in 18 ! ways. But the two persons on either sides of the host can themselves be arranged in 2 ! ways.
\therefore Required number of ways $=2!18!=2.18$!

7 (d)

${ }^{n-1} C_{3}+{ }^{n-1} C_{4}>{ }^{n} C_{3}$
$\Rightarrow{ }^{n} C_{4}>{ }^{n} C_{3}$
$\Rightarrow \quad \frac{n!}{(n-4)!4!}>\frac{n!}{(n-3)!3!}$
$\Rightarrow(n-3)(n-4)!>(n-4)!4$
$\Rightarrow n>7$
8 (c)
We know that $\frac{(m n)!}{(m!)^{n}}$ is the number of ways of distributing $m n$ distinct object in n persons equally
Hence, $\frac{(m n)!}{(m!)^{n}}$ is a positive integer
Consequently, (mn) ! is divisible by (m ! $)^{n}$
Similarly, ($m n$) ! is divisible by ($n!)^{m}$
Now,
$n<m \Rightarrow m+n<2 m \leq m n$ and $m-n<m<m n$
$\Rightarrow(m+n)!\mid(m n)$!and $(m-n)!\mid(m n)!$
9
(d)

The number of subsets containing more than n elements is equal to
${ }^{2 n+1} C_{n+1}+{ }^{2 n+1} C_{n+2}+\ldots+{ }^{2 n+1} C_{2 n+1}$
$=\frac{1}{2}\left\{{ }^{2 n+1} C_{0}+{ }^{2 n+1} C_{1}+\ldots+{ }^{2 n+1} C_{2 n+1}\right\}=\frac{1}{2}\left(2^{2 n+1}\right)=2^{2 n}$
11
(a)

We have, 9 letters $3 a^{\prime} \mathrm{s}, 2 b^{\prime}$ s and $4 c^{\prime}$ s. These 9 letters can be arranged in $\frac{9!}{3!2!4!}=1260$ ways
The total number of subsets of given set is $2^{9}=512$
Case I When selecting only one even number $\{2,4,6,8\}$
Number of ways $={ }^{4} C_{1}=4$
Case II When selecting only two even numbers $={ }^{4} C_{2}=6$
Case III When selecting only three even numbers $={ }^{4} C_{3}=4$

Case IV When selecting only four even numbers $={ }^{4} C_{4}=1$
\therefore Required number of ways
$=512-(4+6+4+1)-1=496$
[here, we subtract 1 for due to the null set]
14 (a)
The number of ways of choosing a committee if there is no restriction is
${ }^{10} C_{4} \cdot{ }^{9} C_{5}=\frac{10!}{4!6!} \cdot \frac{9!}{4!5!}=26460$
The number of ways of choosing the committee if both Mr. A and Ms. B are included in the committee is ${ }^{9} C_{3} \cdot{ }^{8} C_{4}=5880$
Therefore, the number of ways of choosing the committee when Mr. A and Ms. B are not together

$$
=26480-5880=20580
$$

(d)
(1)It is true that product of r consecutive natural numbers is always divisible by r.
(2) Now, $115500=2^{2} \times 3^{1} \times 5^{3} \times 7^{1} \times 11^{1}$
\therefore Total number of proper divisor
$=(2+1)(1+1)(3+1)(1+1)(1+1)-2$
$=96-2=94$
(3) Total number of ways $=\frac{52!}{(13!)^{4}}$

Hence, all statements are true
16
(d)

Total numbers formed by using given 5 digits $=\frac{5!}{2!}$
For number greater than 40000 , digit 2 cannot come at first place. Hence, number formed in which 2 is at the first place $=\frac{4!}{2!}$
Hence, total numbers formed greater than 40000
$=\frac{5!}{2!}=\frac{4!}{2!}=60-12=48$
17
(c)

In the case of each book we may take $0,1,2,3, \ldots p$ copies; that is, we may deal with each book in $p+1$ ways and therefore with all the books in $(p+1)^{n}$ ways. But, this includes the case where all the books are rejected and no selection is made
\therefore Number of ways in which selection can be made
$=(p+1)^{n}-1$
18 (b)
First we fix the alternate position of the girls. Five girls can be seated around the circle in $(5-1)$
$!=4!, 5$ boys can be seated in five vacant place by 5 !
\therefore Required number of ways $=4!\times 5$!

19
(c)

The number of words start with $D=6!=720$
The number of words start with $E=6!=720$
The number of words start with $M D=5!=120$
The number of words start with $M E=5!=120$
Now sthe first word start with MO is MODESTY.
Hence, rank of MODESTY $=720+720+120+120$
$=1681$
20
(c)

Starting with the letter A and arranging the other four letters, there are $4!=24$ words. The starting with G, and arranging A, A, I, and N in different ways, there are $\frac{4!}{2!}=12$ words. Next the $37^{\text {th }}$ word starts with I, there are 12 words starting with I. This accounts upto the $48^{\text {th }}$ word. The $49^{\text {th }}$ word in NAAGI. The $50^{\text {th }}$ word is NAAAIG

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | A | C | A | C | C | B | D | C | D | A |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | A | C | D | A | D | D | C | B | C | C |
| | | | | | | | | | | |

