

1 (c)

Since, no two lines are parallel and no three are concurrent, therefore *n* straight lines intersect at ^{*n*} $C_2 = N$ (say) points. Since, two points are required to determine a straight line, therefore the total number of lines obtained by joining *N* points is ^{*N*} C_2 . But in this each old line has been counted ^{*n*-1} C_2 times. Since, on each old line there will be n - 1 lines.

Hence, the required number of fresh lines.

$$= {}^{N}C_{2} - n {}^{n-1}C_{2}$$

$$= \frac{N(N-1)}{2} - \frac{n(n-1)(n-2)}{2}$$

$$= \frac{{}^{n}C_{2}({}^{n}C_{2}-1)}{2} - \frac{n(n-1)(n-2)}{2} (\because N = {}^{n}C_{2})$$

$$= \frac{n(n-1)}{2} \left(\frac{n(n-1)}{2} - 1\right)}{2} - \frac{n(n-1)(n-2)}{2}$$

$$= \frac{n(n-1)}{8} [(n^{2} - n - 2) - 4(n-2)]$$

$$= \frac{n(n-1)}{8} [n^{2} - 5n + 6]$$

$$= \frac{n(n-1)(n-2)(n-3)}{8}$$

2 (c) The required number of ways

$$= ({}^{2}C_{1} \times {}^{4}C_{2} + {}^{2}C_{2} \times {}^{4}C_{1}) \times 3!$$
$$= (2 \times 6 + 1 \times 4)6 = 96$$

3 **(a)**

The factor of $216 = 2^3 \cdot 3^3$ The odd divisors are the multiple of 3 \therefore The number of divisors=3+1=4 4 (c) We have, $E_3(100 !) = \left[\frac{100}{3}\right] + \left[\frac{100}{3^2}\right] + \left[\frac{100}{3^3}\right] \left[\frac{100}{3^4}\right] = 33 + 11 + 3 + 1 = 48$ 5 (b)

Case I When number in two digits.

Total number of ways $= 9 \times 9 = 81$

Case II When number in three digits

Total number of ways $= 9 \times 9 \times 9 = 729$

 \therefore Total number of ways = 81 + 729 = 810

6 **(b)** We have, ${}^{56}P_{r+6}: {}^{54}P_{r+3} = 30800:1$ $\Rightarrow \frac{56!}{(50-r)!} = 3800 \left(\frac{54!}{(51-r)!} \right)$ $\Rightarrow 56 \times 55 = \frac{3800}{51-r}$ $\Rightarrow 51 - r = 10 \Rightarrow r = 41$ 7 **(c)**

We have,

Required number of numbers

- = Total number of numbers formed by the digits 1,2,3,4,5
- Number of numbers having 1 at ten thousand's place
- Number of numbers having 2 at ten thousand's place and 1 at thousand's place
- Number of numbers having 2 at ten thousand's place and 3 at thousand's place

= 5! - 4! - 3! - 3! = 120 - 24 - 6 - 6 = 84

The number of ways of selecting 3 points out of 12 points is ${}^{12}C_3$. Three points out of 7 collinear points can be selected in ${}^{7}C_3$ ways

Hence, the number of triangles formed $= {}^{12}C_3 - {}^7C_3 = 185$

Required sum=(sum of the digits)
$$(n-1)! \left(\frac{10^n - 1}{10 - 1}\right)$$

$$= (1+2+3+4+5)(5-1)! \left(\frac{10^5-1}{10-1}\right)$$

$$= 360 \left(\frac{100000 - 1}{9}\right) = 40 \times 99999 = 3999960$$

10 (c)

Total number of words formed by 4 letters form given eight different letters with repetition = 8^4 and number of words with no repetition = 8P_4

 \therefore Required number of words = $8^4 - {}^8P_4$

11 **(d)**

Given number of flags = 5

Number of signals formed using one flag = ${}^{5}P_{1} = 5$

Similarly, using 2 flags = ${}^{5}P_{2}$

Using 3 flags = ${}^{5}P_{3}$

Using 4 flags = ${}^{5}P_{4}$

Using 5 flags = ${}^{5}P_{5}$

 \therefore Total number of signals that can be formed

 $= {}^{5}P_{1} + {}^{5}P_{2} + {}^{5}P_{3} + {}^{5}P_{4} + {}^{5}P_{5}$

= 5 + 20 + 60 + 120 + 120

= 325

12 **(d)**

Required number of permutations = $\frac{6!}{3!2!} = 60$

13 **(c)**

Out of 22 players 4 are excluded and 2 are to be included in every selection. This means that 9 players are to be selected from the remaining 16 players which can be done in ${}^{16}C_9$ ways

234 **(b)**

The letters in the word 'CONSEQUENCE' are 2C, 3E, 2N, 1O, 1Q, 1S, 1U

: Required number of permutations = $\frac{9!}{2!2!}$

15 **(c)**

The number of different sums of money Sita can form is equal to the number of ways in which she can select at least one coin out of 5 different coins

Hence, required number of ways $= 2^5 - 1 = 31$

16 **(a)**

For the first player, distribute the cards in ${}^{52}C_{17}$ ways. Now, out of 35 cards left 17 cards can be put for second player in ${}^{35}C_{17}$ ways. Similarly, for third player put them in ${}^{18}C_{17}$ ways. One card for the last player can be put in ${}^{1}C_{1}$ way. Therefore, the required number of ways for the proper distribution

$$= {}^{52}C_{17} \times {}^{35}C_{17} \times {}^{18}C_{17} \times {}^{1}C_{1}$$
$$= \frac{52!}{35!17!} \times \frac{35!}{18!17!} \times \frac{18!}{17!1!} \times 1! = \frac{52!}{(17!)^3}$$
17 **(b)**

Suppose $x_1 x_2 x_3 x_4 x_5 x_6 x_7$ represents a seven digit number. Then x_1 takes the value 1,2,3,...,9 and $x_2,x_3,...,x_7$ all take values 0,1,2,3,...,9

If we keep $x_1, x_2, ..., x_6$ fixed, then the sum $x_1 + x_2 + ... + x_6$ is either even or odd. Since x_7 takes 10 values 0,1,2,...9, five of the numbers so formed will be even and 5 odd Hence, the required number of numbers

 $= 9 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 5 = 4500000$ 19 (a)

The required number of ways is equal to the number of dearrangements of 10 objects.

∴ Required number of ways

$$= 10! \Big\{ 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{1}{10!} \Big\}$$

20 (a)

The number of words starting from A are =5!=120

The number of words starting from I are =5!=120

The number of words starting from KA are =4!=24

The number of words starting from KI are =4!=24

The number of words starting from KN are =4!=24

The number of words starting from KRA are =3!=6

The number of words starting from KRIA are =2!=2

The number of words starting from KRIN are =2!=2

The number of words starting from KRISA are=1!=1

The number of words starting from KRISNA are=1!=1

Hence, rank of the word KRISNA

= 2(120) + 3(24) + 6 + 2(2) + 2(1) = 324

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	C	А	С	В	В	С	С	D	С
Q.	11	12	13	14	15	16	17	18	19	20
A.	D	D	С	В	С	А	В	D	А	А

