CLASS : XIth

Solutions

SUBJECT : MATHS
DPP NO. :7

TOpic :-PERMUTATIONS AND COMBINATIONS

1
(c)

Since, no two lines are parallel and no three are concurrent, therefore n straight lines intersect at ${ }^{n}$ $C_{2}=N$ (say) points. Since, two points are required to determine a straight line, therefore the total number of lines obtained by joining N points is ${ }^{N} C_{2}$. But in this each old line has been counted ${ }^{n-1}$ C_{2} times. Since, on each old line there will be $n-1$ lines.

Hence, the required number of fresh lines.

$$
\begin{aligned}
& ={ }^{N} C_{2}-n^{n-1} C_{2} \\
& =\frac{N(N-1)}{2}-\frac{n(n-1)(n-2)}{2} \\
& =\frac{{ }^{n} C_{2}\left({ }^{n} C_{2}-1\right)}{2}-\frac{n(n-1)(n-2)}{2}\left(\because N={ }^{n} C_{2}\right) \\
& =\frac{\frac{n(n-1)}{2}\left(\frac{n(n-1)}{2}-1\right)}{2}-\frac{n(n-1)(n-2)}{2} \\
& =\frac{n(n-1)}{8}\left[\left(n^{2}-n-2\right)-4(n-2)\right] \\
& =\frac{n(n-1)}{8}\left[n^{2}-5 n+6\right] \\
& =\frac{n(n-1)(n-2)(n-3)}{8}
\end{aligned}
$$

2 (c)
The required number of ways
$=\left({ }^{2} C_{1} \times{ }^{4} C_{2}+{ }^{2} C_{2} \times{ }^{4} C_{1}\right) \times 3!$
$=(2 \times 6+1 \times 4) 6=96$
(a)

The factor of $216=2^{3} \cdot 3^{3}$
The odd divisors are the multiple of 3
\therefore The number of divisors $=3+1=4$
4
(c)

We have,
$E_{3}(100!)=\left[\frac{100}{3}\right]+\left[\frac{100}{3^{2}}\right]+\left[\frac{100}{3^{3}}\right]\left[\frac{100}{3^{4}}\right]=33+11+3+1=48$

5
 (b)

Case I When number in two digits.
Total number of ways $=9 \times 9=81$
Case II When number in three digits
Total number of ways $=9 \times 9 \times 9=729$
\therefore Total number of ways $=81+729=810$
6 (b)
We have,
${ }^{56} P_{r+6}:{ }^{54} P_{r+3}=30800: 1$
$\Rightarrow \frac{56!}{(50-r)!}=3800\left(\frac{54!}{(51-r)!}\right)$
$\Rightarrow 56 \times 55=\frac{3800}{51-r}$
$\Rightarrow 51-r=10 \Rightarrow r=41$
7
(c)

We have,
Required number of numbers
$=$ Total number of numbers formed by the digits 1,2,3,4,5

- Number of numbers having 1 at ten thousand's place
- Number of numbers having 2 at ten thousand's place and 1 at thousand's place
- Number of numbers having 2 at ten thousand's place and 3 at thousand's place $=5!-4!-3!-3!=120-24-6-6=84$
8 (c)
The number of ways of selecting 3 points out of 12 points is ${ }^{12} C_{3}$. Three points out of 7 collinear points can be selected in ${ }^{7} C_{3}$ ways
Hence, the number of triangles formed $={ }^{12} C_{3}-{ }^{7} C_{3}=185$
9 (d)
Required sum $=($ sum of the digits $)(n-1)!\left(\frac{10^{n}-1}{10-1}\right)$
$=(1+2+3+4+5)(5-1)!\left(\frac{10^{5}-1}{10-1}\right)$
$=360\left(\frac{100000-1}{9}\right)=40 \times 99999=3999960$
10
(c)

Total number of words formed by 4 letters form given eight different letters with repetition $=8^{4}$ and number of words with no repetition $={ }^{8} P_{4}$
\therefore Required number of words $=8^{4}-{ }^{8} P_{4}$
11 (d)
Given number of flags $=5$
Number of signals formed using one flag $={ }^{5} P_{1}=5$
Similarly, using 2 flags $={ }^{5} P_{2}$
Using 3 flags $={ }^{5} P_{3}$
Using 4 flags $={ }^{5} P_{4}$
Using 5 flags $={ }^{5} P_{5}$
\therefore Total number of signals that can be formed
$={ }^{5} P_{1}+{ }^{5} P_{2}+{ }^{5} P_{3}+{ }^{5} P_{4}+{ }^{5} P_{5}$
$=5+20+60+120+120$
$=325$
12
(d)

Required number of permutations $=\frac{6!}{3!2!}=60$
13 (c)
Out of 22 players 4 are excluded and 2 are to be included in every selection. This means that 9 players are to be selected from the remaining 16 players which can be done in ${ }^{16} C_{9}$ ways
234
(b)

The letters in the word 'CONSEQUENCE' are 2C, 3E, 2N, 10, 1Q, 1S, 1U
\therefore Required number of permutations $=\frac{9!}{2!2!}$
15 (c)
The number of different sums of money Sita can form is equal to the number of ways in which she can select at least one coin out of 5 different coins
Hence, required number of ways $=2^{5}-1=31$
16 (a)
For the first player, distribute the cards in ${ }^{52} C_{17}$ ways. Now, out of 35 cards left 17 cards can be put for second player in ${ }^{35} C_{17}$ ways. Similarly, for third player put them in ${ }^{18} C_{17}$ ways. One card for the last player can be put in ${ }^{1} C_{1}$ way. Therefore, the required number of ways for the proper distribution
$={ }^{52} C_{17} \times{ }^{35} C_{17} \times{ }^{18} C_{17} \times{ }^{1} C_{1}$
$=\frac{52!}{35!17!} \times \frac{35!}{18!17!} \times \frac{18!}{17!1!} \times 1!=\frac{52!}{(17!)^{3}}$

17
 (b)

Suppose $x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7}$ represents a seven digit number. Then x_{1} takes the value $1,2,3, \ldots, 9$ and $x_{2}, x_{3}, \ldots, x_{7}$ all take values $0,1,2,3, \ldots, 9$
If we keep $x_{1}, x_{2}, \ldots, x_{6}$ fixed, then the sum $x_{1}+x_{2}+\ldots+x_{6}$ is either even or odd. Since x_{7} takes 10 values $0,1,2, \ldots 9$, five of the numbers so formed will be even and 5 odd
Hence, the required number of numbers
$=9 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 5=4500000$
19
(a)

The required number of ways is equal to the number of dearrangements of 10 objects.
\therefore Required number of ways
$=10!\left\{1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\ldots+\frac{1}{10!}\right\}$

20
 (a)

The number of words starting from A are $=5!=120$
The number of words starting from I are $=5!=120$
The number of words starting from KA are $=4!=24$
The number of words starting from KI are $=4!=24$
The number of words starting from KN are $=4!=24$
The number of words starting from KRA are $=3!=6$
The number of words starting from KRIA are $=2!=2$
The number of words starting from KRIN are $=2!=2$
The number of words starting from KRISA are $=1!=1$
The number of words starting from KRISNA are $=1!=1$
Hence, rank of the word KRISNA
$=2(120)+3(24)+6+2(2)+2(1)=324$

