

CLASS : XIth DATE :

Solutions

SUBJECT : MATHS DPP NO. :6

Topic :-PERMUTATIONS AND COMBINATIONS

1 **(d)**

Let the total number of contestants = nA voter can vote to (n-1) candidates $\therefore {}^{n}C_{1} + ... + {}^{n}C_{n-1} = 126$ $\Rightarrow 2^n - 2 = 126$ $\Rightarrow 2^n = 128 = 2^7$ \Rightarrow n = 72 (c) We have. ${}^{n}C_{n-r} + 3 \cdot {}^{n}C_{n-r+1} + 3 \cdot {}^{n}C_{n-r+2} + {}^{n}C_{n-r+3} = {}^{x}C_{r}$ $\Rightarrow ({}^{n}C_{n-r} + {}^{n}C_{n-r+1}) + 2({}^{n}C_{n-r+1} + {}^{n}C_{n-r+2})$ $+ ({}^{n}C_{n-r+2} + {}^{n}C_{n-r+3}) = {}^{x}C_{r}$ $\Rightarrow^{n+1}C_{n-r+1} + 2^{n+1}C_{n-r+2} + {n+1 \choose n-r+3} = {r \choose r}C_{n-r+3}$ $[:: {}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}]$ $\Rightarrow \{ {}^{n+1}C_{n-r+1} + {}^{n+1}C_{n-r+2} \} + \{ {}^{n+1}C_{n-r+2} + {}^{n+1}C_{n-r+3} \} = {}^{x}C_{r}$ $\Rightarrow {}^{n+2}C_{n-r+2} + {}^{n+2}C_{n-r+3} = {}^{x}C_{r}$ $\Rightarrow {}^{n+3}C_{n-r+3} = {}^{x}C_{r}$ $\Rightarrow {}^{n+3}C_r = {}^xC_r \qquad [:: {}^{n+3}C_{n-r+3} = {}^{n+3}C_r]$ $\Rightarrow x = n + 3$ 3 **(b)**

A 2 \times 2 matrix has 4 elements such that each element can two values. Thus, total number of matrices

 $= 2 \times 2 \times 2 \times 2 = 16$

4 **(a)**

∴ Total number of seats = nand number of people = mIst person can be seated in n ways IInd person can be seated in (n - 1) ways

······

*m*th person can be seated in (n - m + 1)*ways*

∴ Total number of ways

 $= n(n-1)(n-2)...(n-m+1) = {}^{n}P_{m}$

Alternate In out of *n* seats *m* people can be seated in ${}^{n}P_{m}$ ways

5 (c)

Given word is EAMCET

Here number of vowels are 3 *ie*, E, A, E and number of consonants are 3, *ie*, M, C, T and number of ways of arranging three consonants = 3! = 6

VCVCVCV

In the places 'V', we shall arrange vowels

There are 4 places marked V

∴ Number of ways of arranging vowels

 $= {}^{4}P_{3} + \frac{1}{2} = 12$ [: E is repeated twice]

: Total number of words = $6 \times 12 = 72$

The vowels in the word "COMBINE" are O, I, E which can be arranged at 4 places in ${}^{4}P_{3}$ ways and other words can be arranged in 4! ways

Hence, total number of ways = ${}^{4}P_{3} \times 4!$

 $= 4! \times 4!$

= 576

8 **(b)**

Number of ways of giving one prize for running = 16

Number of ways of giving one prizes for swimming $= 16 \times 15$

Number of ways of giving three prizes for riding $= 16 \times 15 \times 14$

 \therefore Required ways of giving prizes = $16 \times 16 \times 15 \times 16 \times 15 \times 14$

 $= 16^3 \times 15^2 \times 14$

9 **(b)**

First we fix the alternate position of girls and they arrange in 4! ways and in the five places five boys can be arranged in ${}^{5}P_{5}$ ways

: Total number of ways = $4! \times {}^5P_5 = 4! \times 5!$

10 **(c)**

Number of vertices=15

- : Number of lines = ${}^{15}C_2 = 105$
- \therefore Number of diagonals=105-15=90

At least one green ball can be selected out of 5 green balls in $2^5 - 1 = 31$ ways. Similarly at least one blue ball can be selected from 4 blue balls in $2^4 - 1 = 15$ ways and at least one red or not red can be select in $2^3 = 8$ ways

Hence , required number of ways $= 31 \times 15 \times 8 = 3720$

12 (c) We have, The required number of words = $({}^{2}C_{1} \times {}^{4}C_{2} + {}^{2}C_{2} \times {}^{4}C_{1})$ 3 ! = 96

13 **(c)**

First deduct the *n* things and arrange the *m* things in a row taken all at a time, which can be done in m! ways. Now in (m + 1) spaces between them (including the beginning and end) put the *n* things one in each space in all possible ways. This can be done in ${}^{m+1}P_n$ ways.

So, the required number $= m ! {}^{m+1}P_n = \frac{m ! (m+1) !}{(m+1-n) !}$

14 **(b)**

Number greater than 1000 and less than or equal to 4000 will be of 4 digits and will have either 1 (expect 1000) or 2 or 3 in the first place with 0 in each of remaining places.

After fixing 1st place, the second place can be filled by any of the 5 numbers.

Similarly, third place can be filled up in 5 ways and 4th place can be filled up in 5 ways. Thus, there will be $25 \times 5 = 125$

Ways in which 1 will be in first place but this include 1000 also hence there will be 124 numbers having 1 in the first place. Similarly, 125 ways for each 2 or 3 in the Ist place.

One number will be in which 4 in the first place *ie*, 4000

Hence, the required number of numbers

= 124 + 125 + 125 + 1 = 375

15 **(a)**

Considering four particular flowers as one flower, we have five flowers which can be strung to form a garland in 4! ways. But, 4 particular flowers can be arranged in 4! ways. Thus, the required number $= 4! \times 4!$

16 **(b)**

Any number between 1 to 999 is a 3 digit number xyz where the digits x,y,z are any digits from 0 to 9.

Now, we first count the number in which 3 occurs once only. Since 3 can occur at one place in ${}^{3}C_{1}$ ways, there are ${}^{3}C_{1}(9 \times 9) = 3.9^{2}$ such numbers.

Again, 3 occur in exactly two places in ${}^{3}C_{2}$.(9) such numbers. Lastly 3 can occur in all the three digits in one such number only 333

 $\therefore\,$ The number of times 3 occurs

$$= 1 \times (3 \times 9^2) + 2 \times (3 \times 9) + 3 \times 1 = 300$$

17 **(b)**
Number of triangles =
$${}^{n+3}C_3 = 220$$

 $\Rightarrow \frac{(n+3)!}{3!n!} = 220$
 $\Rightarrow (n+1)(n+2)(n+3) = 1320$
 $= 12 \times 10 \times 11$
 $= (9+1)(9+2)(9+3)$
 $\therefore n = 9$
18 **(a)**

First we fix the alternate position of 7 gentlemen in a round table by 6! ways.

There are seven positions between the gentlemen in which 5 ladies can be seated in ${}^{7}P_{5}$ ways \therefore required number of ways

$$= 6! \times \frac{7!}{2!} = \frac{7}{2}(720)^2$$

$$G_7 \qquad G_1 \qquad G_2$$

$$G_7 \qquad G_6 \qquad G_3$$

$$G_6 \qquad G_5 \qquad G_4$$

The number between 999 and 10000 are of four digit numbers.

The number of four digit numbers formed by digits 0, 2, 3, 6, 7, 8 is ${}^{6}P_{4} = 360$

But here those numbers are also involved which being from 0.

So, we take those numbers as th<mark>ree d</mark>igit numbers.

Taking initial digit 0, the number of ways to fill remaining 3 places from five digits 2, 3, 6, 7, 8 are ${}^{5}P_{3} = 60$

So the required numbers = 360 - 60 = 300

Required sum = 3!(3 + 4 + 5 + 6)

 $= 6 \times 18 = 108$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	D	С	В	А	С	А	D	В	В	С
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	С	C	В	А	В	В	А	C	В

