CLASS : XIth

1
(d)

Let the total number of contestants $=n$
A voter can vote to $(n-1)$ candidates
$\therefore{ }^{n} C_{1}+\ldots+{ }^{n} C_{n-1}=126$
$\Rightarrow \quad 2^{n}-2=126$
$\Rightarrow \quad 2^{n}=128=2^{7}$
$\Rightarrow \quad n=7$
2
(c)

We have,
${ }^{n} C_{n-r}+3 \cdot{ }^{n} C_{n-r+1}+3 \cdot{ }^{n} C_{n-r+2}+{ }^{n} C_{n-r+3}={ }^{x} C_{r}$
$\Rightarrow\left({ }^{n} C_{n-r}+{ }^{n} C_{n-r+1}\right)+2\left({ }^{n} C_{n-r+1}+{ }^{n} C_{n-r+2}\right)$
$+\left({ }^{n} C_{n-r+2}+{ }^{n} C_{n-r+3}\right)={ }^{x} C_{r}$
$\Rightarrow{ }^{n+1} C_{n-r+1}+2{ }^{n+1} C_{n-r+2}+{ }^{n+1} C_{n-r+3}={ }^{r} C_{r}$
$\left[\because{ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}\right]$
$\Rightarrow\left\{{ }^{n+1} C_{n-r+1}+{ }^{n+1} C_{n-r+2}\right\}+\left\{{ }^{n+1} C_{n-r+2}+{ }^{n+1} C_{n-r+3}\right\}={ }^{x} C_{r}$
$\Rightarrow{ }^{n+2} C_{n-r+2}+{ }^{n+2} C_{n-r+3}={ }^{x} C_{r}$
$\Rightarrow{ }^{n+3} C_{n-r+3}={ }^{x} C_{r}$
$\Rightarrow{ }^{n+3} C_{r}={ }^{x} C_{r} \quad\left[\because{ }^{n+3} C_{n-r+3}={ }^{n+3} C_{r}\right]$
$\Rightarrow x=n+3$
3
(b)

A 2×2 matrix has 4 elements such that each element can two values. Thus, total number of matrices
$=2 \times 2 \times 2 \times 2=16$
4
(a)
\because Total number of seats $=n$
and number of people $=m$
Ist person can be seated in n ways
IInd person can be seated in $(n-1)$ ways
\qquad
\qquad
\qquad
m th person can be seated in $(n-m+1)$ ways
\therefore Total number of ways
$=n(n-1)(n-2) \ldots(n-m+1)={ }^{n} P_{m}$
Alternate In out of n seats m people can be seated in ${ }^{n} P_{m}$ ways
$5 \quad$ (c)
Given word is EAMCET
Here number of vowels are 3 ie, $\mathrm{E}, \mathrm{A}, \mathrm{E}$ and number of consonants are $3, i e, \mathrm{M}, \mathrm{C}, \mathrm{T}$ and number of ways of arranging three consonants $=3!=6$
V C V C V C V
In the places ' V ', we shall arrange vowels
There are 4 places marked V
\therefore Number of ways of arranging vowels
$={ }^{4} P_{3}+\frac{1}{2}=12 \quad[\because$ E is repeated twice $]$
\therefore Total number of words $=6 \times 12=72$
$7 \quad$ (d)
The vowels in the word "COMBINE" are O, I, E which can be arranged at 4 places in ${ }^{4} P_{3}$ ways and other words can be arranged in 4 ! ways
Hence, total number of ways $={ }^{4} P_{3} \times 4$!
$=4!\times 4!$
$=576$
8
(b)

Number of ways of giving one prize for running $=16$
Number of ways of giving one prizes for swimming $=16 \times 15$
Number of ways of giving three prizes for riding $=16 \times 15 \times 14$
\therefore Required ways of giving prizes $=16 \times 16 \times 15 \times 16 \times 15 \times 14$
$=16^{3} \times 15^{2} \times 14$

9
 (b)

First we fix the alternate position of girls and they arrange in 4 ! ways and in the five places five boys can be arranged in ${ }^{5} P_{5}$ ways
\therefore Total number of ways $=4!\times{ }^{5} P_{5}=4!\times 5!$

10
 (c)

Number of vertices $=15$
$\therefore \quad$ Number of lines $={ }^{15} C_{2}=105$
\therefore Number of diagonals $=105-15=90$
11
(b)

At least one green ball can be selected out of 5 green balls in $2^{5}-1=31$ ways. Similarly at least one blue ball can be selected from 4 blue balls in $2^{4}-1=15$ ways and at least one red or not red can be select in $2^{3}=8$ ways

Hence ,required number of ways $=31 \times 15 \times 8=3720$

12

(c)

We have,
The required number of words
$=\left({ }^{2} C_{1} \times{ }^{4} C_{2}+{ }^{2} C_{2} \times{ }^{4} C_{1}\right) 3!=96$
13
(c)

First deduct the n things and arrange the m things in a row taken all at a time, which can be done in m ! ways. Now in $(m+1)$ spaces between them (including the beginning and end) put the n things one in each space in all possible ways. This can be done in ${ }^{m+1} P_{n}$ ways.
So, the required number $=m!{ }^{m+1} P_{n}=\frac{m!(m+1)!}{(m+1-n)!}$

14 (b)

Number greater than 1000 and less than or equal to 4000 will be of 4 digits and will have either 1 (expect 1000) or 2 or 3 in the first place with 0 in each of remaining places.
After fixing 1 st place, the second place can be filled by any of the 5 numbers.
Similarly, third place can be filled up in 5 ways and 4th place can be filled up in 5 ways. Thus, there will be $25 \times 5=125$
Ways in which 1 will be in first place but this include 1000 also hence there will be 124 numbers having 1 in the first place. Similarly, 125 ways for each 2 or 3 in the Ist place.
One number will be in which 4 in the first place $i e, 4000$
Hence, the required number of numbers

$$
=124+125+125+1=375
$$

15 (a)

Considering four particular flowers as one flower, we have five flowers which can be strung to form a garland in 4! ways. But, 4 particular flowers can be arranged in 4 ! ways. Thus, the required number $=4!\times 4!$
16 (b)
Any number between 1 to 999 is a 3 digit number $x y z$ where the digits x, y, z are any digits from 0 to 9.

Now, we first count the number in which 3 occurs once only. Since 3 can occur at one place in ${ }^{3} C_{1}$ ways, there are ${ }^{3} C_{1} \cdot(9 \times 9)=3.9^{2}$ such numbers.

Again, 3 occur in exactly two places in ${ }^{3} C_{2}$.(9) such numbers. Lastly 3 can occur in all the three digits in one such number only 333
\therefore The number of times 3 occurs
$=1 \times\left(3 \times 9^{2}\right)+2 \times(3 \times 9)+3 \times 1=300$
(b)

Number of triangles $={ }^{n+3} C_{3}=220$

$$
\begin{aligned}
& \Rightarrow \quad \frac{(n+3)!}{3!n!}=220 \\
& \Rightarrow \quad(n+1)(n+2)(n+3)=1320 \\
& =12 \times 10 \times 11 \\
& =(9+1)(9+2)(9+3) \\
& \therefore \quad n=9
\end{aligned}
$$

18 (a)
First we fix the alternate position of 7 gentlemen in a round table by 6 ! ways.
There are seven positions between the gentlemen in which 5 ladies can be seated in ${ }^{7} P_{5}$ ways
\therefore required number of ways
$=6!\times \frac{7!}{2!}=\frac{7}{2}(720)^{2}$

19
(c)

The number between 999 and 10000 are of four digit numbers.
The number of four digit numbers formed by digits $0,2,3,6,7,8$ is ${ }^{6} P_{4}=360$
But here those numbers are also involved which being from 0 .
So, we take those numbers as three digit numbers.
Taking initial digit 0 , the number of ways to fill remaining 3 places from five digits $2,3,6,7,8$ are ${ }^{5}$ $P_{3}=60$
So the required numbers $=360-60=300$

20
 (b)

Required sum $=3!(3+4+5+6)$
$=6 \times 18=108$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	D	C	B	A	C	A	D	B	B	C
Q.	11	12	13	14	15	16	17	18	19	20
A.	B	C	C	B	A	B	B	A	C	B

