CLASS : XIth
DATE :

Solutions

SUBJECT : MATHS
DPP NO. :5

TOpic :-PERMUTATIONS AND COMBINATIONS

1
(a)

Since total number are 15, but three special members constitute one member.
Therefore, required number of arrangements are $12!\times 2$, because, chairman remains between the two specified persons and person can sit in two ways

2
 (b)

Let there be n participants. Then, we have

$$
{ }^{n} C_{2}=45
$$

$\Rightarrow \frac{n(n-1)}{2}=45 \Rightarrow n^{2}-n-9=0 \Rightarrow n=10$
3
(d)

Required number of ways $={ }^{12-1} C_{9-1}$
$={ }^{11} C_{8}=\frac{11 \times 10 \times 9}{3 \times 2 \times 1}=165$

5
(c)

A number is divisible by 3 , if the sum of the digits is divisible by 3
Since, $1+2+3+4+5=15$ is divisible by 3 , therefore total such numbers is $5!i e, 120$
And, other five digits whose sum is divisible by 3 are $0,1,2,4,5$
Therefore, number of such formed numbers $=5!-4!=96$
Hence, the required number if numbers $=120+96=216$
7
(b)

Each child will go as often as he (or she) can be accompanied by two others
\therefore Required number $={ }^{7} C_{2}=21$
8
(a)

We have,
Required sum $=(2+3+4+5)(4-1)!\left(\frac{10^{4}-1}{10-1}\right)$
$=14 \times 6 \times\left(\frac{10^{4}-1}{10-1}\right)=93324$

9
 (b)

Here, we have to divide 52 cards into 4 sets, three of them having 17 cards each and the fourth one having just one card. First we divide 52 cards into two groups of 1 card and 51 cards. This can be done in $\frac{52!}{1!51!}$ ways
Now, every group of 51 cards can be divided into 3 groups of 17 each in $\frac{51!}{(17!)^{3} 3!}$
Hence, the required number of ways
$=\frac{52!}{1!51!} \cdot \frac{51!}{(17!)^{3} 3!}=\frac{52!}{(17!)^{3} 3!}$
10 (d)
The required number is ${ }^{9} C_{5}+{ }^{9} C_{4} \times{ }^{8} C_{1}+{ }^{9} C_{3} \times{ }^{8} C_{2}=3486$
11
(c)

If there were no three points collinear, we should have ${ }^{10} C_{2}$ lines; but since 7 points are collinear we must subtract ${ }^{7} C_{2}$ lines and add the one corresponding to the line of collinearity of the seven points.
Thus, the required number of straight lines $={ }^{10} C_{2}-{ }^{7} C_{2}+1=25$
13
(d)

The required number of points
$={ }^{8} C_{2} \times 1+{ }^{4} C_{2} \times 2+\left({ }^{8} C_{1} \times{ }^{4} C_{1}\right) \times 2$
$=28+12+32 \times 2=104$
14 (d)
${ }^{16} C_{r}={ }^{16} C_{r+1}$
$\Rightarrow{ }^{16} C_{16-r}={ }^{16} C_{r+1} \quad\left[\because{ }^{n} C_{r}={ }^{n} C_{n-r}\right]$
$\Rightarrow 16-r=r+1 \Rightarrow 2 r=15$
$\Rightarrow \quad r=7.5$
Which is not possible, since r should be an integer

15
 (a)

We have,
$\sum_{r=0}^{m}{ }^{n+r} C_{n}=\sum_{r=0}^{m}{ }^{n+r} C_{r} \quad\left[\because{ }^{n} C_{r}={ }^{n} C_{n-r}\right]$
$\Rightarrow \sum_{r=0}^{m}{ }^{n+r} C_{n}={ }^{n} C_{0}+{ }^{n+1} C_{1}+{ }^{n+2} C_{2}+\ldots+{ }^{n+m} C_{m}$
$\Rightarrow \sum_{r=0}^{m}{ }^{n+r} C_{n}=[1+(n+1)]+{ }^{n+2} C_{2}+{ }^{n+3} C_{3}+\ldots+{ }^{n+m} C_{m}$
$\Rightarrow \sum_{r=0}^{m}{ }^{n+r} C_{n}=\left({ }^{n+2} C_{1}+{ }^{n+2} C_{2}\right)+{ }^{n+3} C_{3}+\ldots+{ }^{n+m} C_{m}$
$\Rightarrow \sum_{r=0}^{m}{ }^{n+r} C_{n}=\left({ }^{n+3} C_{2}+{ }^{n+3} C_{3}\right)+{ }^{n+4} C_{4}+\ldots+{ }^{n+m} C_{m}$
$\Rightarrow \sum_{r=0}^{m}{ }^{n+r} C_{n}=\left({ }^{n+4} C_{3}+{ }^{n+4} C_{4}\right)+\ldots+{ }^{n+m} C_{m}$
$={ }^{n+m} C_{m-1}+{ }^{n+m} C_{m}$
$\Rightarrow \sum_{r=0}^{m}{ }^{n+r} C_{n}={ }^{n+m+1} C_{m}$
$\Rightarrow \sum_{r=0}^{m}{ }^{n+r} C_{n}={ }^{n+m+1} C_{n+1}\left[\because{ }^{n} C_{r}={ }^{n} C_{n-r}\right]$
16
(a)

Taking option (a)
${ }^{n-1} P_{r}+r^{n-1} P_{r-1}=\frac{(n-1)!}{(n-1-r)!}+\frac{(n-1)!}{(n-r)!}$
$\left(\therefore{ }^{n} P_{r}=\frac{n!}{(n-r)!}\right)$
$=\frac{(n-1)!}{(n-1-r)!}\left(1+r \cdot \frac{1}{n-r}\right)$
$=\frac{(n-1)!}{(n-1-r)!}\left(\frac{n}{n-r}\right)=\frac{n!}{(n-r)!}={ }^{n} P_{r}$

17 (a)

First we fix the position of 6 men, the number of ways to sit men $=5$! and the number of ways to sit women ${ }^{6} P_{5}$
\therefore Total number of ways $=5!{ }^{6} P_{5}=5!\times 6!$

18 (b)

In a octagon there are eight sides and eight points
\therefore Required number of diagonals
$={ }^{8} C_{2}-8=28-8=20$
19
(a)

The required number of ways $=$ The even number of 0 's $i e,\{0,2,4,6, \ldots\}$
$=\frac{n!}{n!}+\frac{n!}{2!(n-2)!}+\frac{n!}{4!(n-4)!}+\ldots$
$={ }^{n} C_{0}+{ }^{n} C_{2}+{ }^{n} C_{4}+\ldots=2^{n-1}$
20
(c)

We have,
${ }^{n-1} C_{3}+{ }^{n-1} C_{4}>{ }^{n} C_{3}$
$\Rightarrow{ }^{n} C_{4}>{ }^{n} C_{3} \quad\left[\because{ }^{n} C_{r-1}+{ }^{n} C_{r}={ }^{n+1} C_{r}\right]$
$\Rightarrow \frac{n!}{(n-4)!4!}>\frac{n!}{(n-3)!3!}$
$\Rightarrow \frac{1}{4}>\frac{1}{n-3} \Rightarrow n>7$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	B	D	B	C	D	B	A	B	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	C	C	D	D	A	A	A	B	A	C

