CLASS : XIth
DATE :

Solutions

SUBJECT : MATHS
DPP NO. :3

TOpic :-PERMUTATIONS AND COMBINATIONS

1
(b)

Word MEDITERRANEAN has 2A, 3E, 1D, 1I, 1M, 2N, 2R, 1T
In out of four letters E and R is fixed and rest of the two letters can be chosen in following ways Case I Both letter are of same kind ie, ${ }^{3} C_{2}$ ways, therefore number of words $={ }^{3} C_{2} \times \frac{2!}{2!}=3$
Case II Both letters are of different kinds ie, ${ }^{8} C_{2}$ ways, therefore number of words $={ }^{8} C_{2} \times 2!=56$ Hence, total number of words $=56+3=59$
2
(c)

Required number of ways

$$
\begin{aligned}
& =\text { coefficient of } x^{2 m} \text { in }\left(x^{0}+x^{1}+\ldots+x^{m}\right)^{4} \\
& =\text { coefficient of } x^{2 m} \text { in }\left(\frac{1-x^{m+1}}{1-x}\right)^{4} \\
& =\text { coefficient of } x^{2 m} \text { in }\left(1-4 x^{m+1}+6 x^{2 m+2}+\ldots\right)(1-x)^{-4}
\end{aligned}
$$

$$
={ }^{2 m+3} C_{2 m}-4^{m+2} C_{m-1}
$$

$$
=\frac{(2 m+1)(2 m+2)(2 m+3)}{6}-\frac{4 m(m+1)(m+2)}{6}
$$

$$
=\frac{(m+1)\left(2 m^{2}+4 m+3\right)}{3}
$$

3
(c)

The number of times he will go to the garden is same as the number of selecting 3 children from 8 .
Therefore, the required number of ways $={ }^{8} C_{3}=56$
4
(c)

The number of ways that the candidate may select
(i) if 2 questions from A and 4 question from B
$={ }^{5} C_{2} \times{ }^{5} C_{4}=50$
(ii) 3 question from A and 3 questions from B
$={ }^{5} C_{3} \times{ }^{5} C_{3}=100$
and (iii) 4 questions from A and 2 questions from B
$={ }^{5} C_{4} \times{ }^{5} C_{2}=50$
Hence, total number of ways $=50+100+50=200$

5 (a)

Since, $240=2^{4} .3 .5$
\therefore Total number of divisors $=(4+1)(1+1)(1+1)=20$
Out of these $2,6,10$ and 30 are of the form $4 n+2$
$7 \quad$ (a)
Required number of arrangements

$$
=\frac{6!}{2!3!}-\frac{5!}{3!}=60-20=40
$$

8
(b)

As we know the last two digits of 10 ! and above factorials will be zero-zero
$\therefore 1!+4!+7!+10!+12!+13!+15!+16!+17!$
$=1+24+5040+10!+12!+13!+15!+16!+17!$
$=5065+10!+12!+13!+15!+16!+17$!in this series, the digit in the ten palce is 6 which is divisible by 3!
$9 \quad$ (c)
As the players who are to receive the cards are different
So, the required number of ways $=\frac{52!}{(13!)^{4}}$
10 (c)
We have, in all 12 points. Since 3 points are used to form a triangle, therefore the total number of triangles, including the triangles formed by collinear points on $A B, B C$ and $C A$, is ${ }^{12} C_{3}=220$. But, this includes the following:
The number of triangles formed by 3 points on $A B$
$={ }^{3} C_{3}=1$,
The number of triangles formed by 4 points on $B C$
$={ }^{4} C_{3}=4$,
The number of triangles formed by 5 points on $C A$
$={ }^{5} C_{3}=10$,
Hence, required number of triangles $=220-(10+4+1)=205$
11
(b)

Given, $\quad{ }^{n} P_{r}=3024$
$\Rightarrow \quad \frac{n!}{(n-r)!}=3024$
And ${ }^{n} C_{r}=\frac{n!}{r!(n-r)!}$
$\Rightarrow \quad 126=\frac{3024}{r!}$
$\Rightarrow \quad r!=24=4!$
$\Rightarrow \quad r=4$
12
(d)

We have,

$$
\begin{aligned}
& { }^{35} C_{8}+\sum_{r=1}^{7}{ }^{42-r} C_{7}+\sum_{s=1}^{5}{ }^{47-s} C_{40-s} \\
& ={ }^{35} C_{8}+\left\{{ }^{41} C_{7}+{ }^{40} C_{7}+{ }^{39} C_{7}+{ }^{38} C_{7}+\ldots+{ }^{35} C_{7}\right\} \\
& +\left\{{ }^{46} C_{39}+{ }^{45} C_{38}+\ldots+{ }^{42} C_{35}\right\} \\
& ={ }^{35} C_{8}+\left\{{ }^{35} C_{7}+{ }^{36} C_{7}+\ldots+{ }^{41} C_{7}\right\} \\
& +\left\{{ }^{42} C_{7}+{ }^{43} C_{7}+\ldots+{ }^{46} C_{7}\right\} \quad\left[\because{ }^{n} C_{r}={ }^{n} C_{n-r}\right] \\
& =\left({ }^{35} C_{8}+{ }^{35} C_{7}\right)+\left({ }^{36} C_{7}+\ldots+{ }^{41} C_{7}+\ldots+{ }^{46} C_{7}\right) \\
& =\left({ }^{36} C_{8}+{ }^{36} C_{7}\right)+{ }^{37} C_{7}+\ldots+{ }^{46} C_{7} \\
& ={ }^{37} C_{8}+{ }^{37} C_{7}+{ }^{38} C_{7}+\ldots+{ }^{46} C_{7} \\
& =\ldots \ldots \ldots \ldots . . \\
& ={ }^{46} C_{8}+{ }^{46} C_{7}={ }^{47} C_{8} \\
& 13 \quad \text { (b) }
\end{aligned}
$$

Taking A_{1}, A_{2} as one group we have 9 candidates which can be ranked in 9! ways. But A_{1} and A_{2} can be arranged among themselves in 2 ! ways
Hence, the required number $=(9!)(2!)=2(9!)$

14
 (c)

Considering $A U$ as one letter, we have 4 letters, namely $L, A \mathcal{U}, G, H$ which can be permuted in 4 ! ways. But, A and U can be put together in 2 ! Ways.
Thus, the required number of arrangements $=4!\times 2!=48$
155
(c)

Total number of ways in which all letters can be arranged in 6 ! ways.
There are two vowels in the word GARDEN
Total number of ways in which these two vowels can be arranged $=2!$
\therefore Total number of required ways $=\frac{6!}{2!}=360$
16 (a)
The possible cases are
Case I A man invites 3 ladies and woman invites 3 gentleman
$\Rightarrow{ }^{4} C_{3}{ }^{4} C_{3}=16$
Case II A man invites (2 ladies, 1 gentlemen) and woman invites (2 gentlemen, 1 lady)
$\Rightarrow\left({ }^{4} C_{2} \cdot{ }^{3} C_{1}\right) \cdot\left({ }^{3} C_{1} \cdot{ }^{4} C_{2}\right)=324$
Case III A man invites (1 lady, 2 gentlemen) and woman invites (2 ladies, 1 gentlemen)
$\Rightarrow\left({ }^{4} C_{1} \cdot{ }^{3} C_{2}\right) \cdot\left({ }^{3} C_{2} \cdot{ }^{4} C_{1}\right)=144$

Case IV A man invites (3 gentlemen) and woman invites (3 ladies)
$\Rightarrow{ }^{3} C_{3} .{ }^{3} C_{3}=1$
\therefore Total number of ways
$=16+324+144+1=485$
18
(a)

A number between 5000 and 10,000 can have any of the digits 5,6,7,8,9 at thousand's place. So, thousand's place can be filled in 5 ways. Remaining 3 places can be filled by the remaining 8 digits
in ${ }^{8} P_{3}$ ways
Hence, required number $=5 \times{ }^{8} P_{3}$
20
(d)

Two circles intersect maximum at two distinct points. Now, two circles can be selected in ${ }^{6} C_{2}$ ways.
\therefore Total number of points in intersection are
${ }^{6} C_{2} \times 2=30$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | B | C | C | C | A | A | A | B | C | C |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | B | D | B | C | C | A | A | A | A | D |
| | | | | | | | | | | |

