

1 (b)
Now,
$${}^{n}C_{r+1} + {}^{n}C_{r-1} + 2 \cdot {}^{n}C_{r}$$

 $= {}^{n}C_{r+1} + {}^{n}C_{r} + {}^{n}C_{r-1} + {}^{n}C_{r}$
 $= {}^{n+1}C_{r+1} + {}^{n+1}C_{r} = {}^{n+2}C_{r+1}$
2 (a)
 $\frac{2}{9!} + \frac{2}{3!7!} + \frac{1}{5!5!}$
 $= \frac{1}{1!9!} + \frac{1}{3!7!} + \frac{1}{5!5!} + \frac{1}{3!7!} + \frac{1}{9!1!}$
 $= \frac{1}{10!} \left[\frac{10!}{1!9!} + \frac{10!}{3!7!} + \frac{10!}{5!5!} + \frac{10!}{3!7!} + \frac{10!}{9!1!} \right]$
 $= \frac{1}{10!} \left\{ {}^{10}C_{1} + {}^{10}C_{3} + {}^{10}C_{5} + {}^{10}C_{7} + {}^{10}C_{9} \right\}$
 $= \frac{1}{10!} (2^{10-1}) = \frac{2^{9}}{10!} = \frac{2^{a}}{b!} (given)$
 $\Rightarrow a = 9, b = 10$

3 (c)

Total number of lines obtained by joining 8 vertices of octagon is ${}^{8}C_{2} = 28$. Out of these, 8 lines are sides and remaining diagonal.

So, number of diagonals = 28 - 8 = 20

4 **(b)**

The number of times he will go to the garden is same as the number of selecting 3 children from 8 children

 \therefore The required number of times = ${}^{8}C_{3} = 56$

5 (c)

$$\therefore {}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$$

 $\therefore {}^{189}C_{36} + {}^{189}C_{35} = {}^{190}C_{36}$
But ${}^{189}C_{35} + {}^{189}C_{x} = {}^{190}C_{x}$

Hence, value of *x* is 36

6 **(d)**

Required number of ways = ${}^{3n}C_n = \frac{3n!}{n! 2n!}$

7 (a)

The word EXAMINATION has 2A, 2I, 2N, E, M, O, T, X therefore 4 letters can be chosen in following ways

Case I When 2 alike of one kind and 2 alike of second kind is ${}^{3}C_{2}$

 \therefore Number of words = ${}^{3}C_{2} \times \frac{4!}{2!2!} = 18$ **Case II** When 2 alike of one kind and 2 different *ie*, ${}^{3}C_{1} \times {}^{7}C_{2}$ $\therefore \text{ Number of words} = {}^{3}C_{1} \times {}^{7}C_{2} \times \frac{4!}{2!} = 756$ **Case III** When all are different *ie*, ${}^{8}C_{4}$ Hence, total number of words = 18 + 756 + 1680 = 24548 (a) Required number of ways = $5! \times 6!$ 9 (d) Number of diagonals in a polygon of *n* sides $= {}^{n}C_{2} - n$ Here, n = 20 \therefore required number of diagonals = ${}^{20}C_2 - 20$ $=\frac{20\times19}{2\times1}-20=170$ 10 (c) ${}^{47}C_4 + \sum_{r=1}^{5} {}^{52-r}C_3 = {}^{47}C_4 + {}^{51}C_3 + {}^{50}C_3 + {}^{49}C_3 + {}^{48}C_3 + {}^{47}C_3$ $= {}^{51}C_3 + {}^{50}C_3 + {}^{49}C_3 + {}^{48}C_3 + ({}^{47}C_3 + {}^{47}C_4)$ $= {}^{52}C_4$

11 **(a)**

First we fix the alternate position of 21 English book, in which 22 vacant places for Hindi books, hence total number of ways are ${}^{22}C_{19} = 1540$

12 **(d)**

Required number of ways

- = Total number of ways in which 8 boys can sit
- Number of ways in which two brothers sit together

 $= 8! - 7! \times 2! = 7! \times 6 = 30240$

13 **(c)**

In forming even numbers, the position on the right can be filled with either 0 or 2. When 0 is filled, the remaining positions can be filled in 3! ways, and when 2 is filled, the position on the left can be filled in 2 ways (0 cannot be used) and the middle two positions in 2! ways (0 can be used)

So, the number of even numbers formed = 3! + 2(2!) = 015 (a) Let the number of participants at the beginning was *n*

$$\therefore \frac{n(n-1)}{2} = 117 - 12$$

$$\Rightarrow n(n-1) = 2 \times 105$$

$$\Rightarrow n^2 - n - 210 = 0$$

$$\Rightarrow (n-15)(n+14) = 0$$

$$\Rightarrow n = 15 [\because n \neq -14]$$
16 (a)

The number will be even if last digit is either 2, 4, 6 or 8 *ie* the last digit can be filled in 4 ways and remaining two digits can be filled in ${}^{8}P_{2}$ ways. Hence, required number of number of three different digits = ${}^{8}P_{2} \times 4 = 224$

17 **(b)**
We have,
$$= {}^{x+2}P_{x+2} = (x + 2)!$$
,
and $b = {}^{x}P_{11} = \frac{x!}{(x - 11)!}$
and $c = {}^{x-11}P_{x-11} = (x - 11)!$
Now, $a = 182 \ bc$
 $\therefore (x + 2)! = 182 \ \frac{x!}{(x - 11)!} (x - 11)!$
 $\Rightarrow (x + 2)! = 182 \ x!$
 $\Rightarrow (x + 2)(x + 1) = 182$
 $\Rightarrow x^{2} + 3x - 180 = 0$
 $\Rightarrow (x - 12)(x + 15) = 0$
 $\Rightarrow x = 12, -15$

 \therefore Neglect the negative value of *x*.

$\Rightarrow x = 12$

18 **(c)**

Since, the books consisting of 5 Mathematics, 4 physics, and 2 chemistry can be put together of the same subject is 5!4!2! ways

But these subject books can be arranged itself in 3! ways

: Required number of ways = 5!4!3!2!

19 **(a)**

If the function is one-one, then select any three from the set *B* in ${}^{7}C_{3}$ ways *i.e.*, 35 ways.

If the function is many-one, then there are two possibilities. All three corresponds to same element number of such functions = ${}^{7}C_{1} = 7$ ways. Two corresponds to same element. Select any two from the set *B*. The lerger one corresponds to the larger and the smaller one corresponds to the smaller the third may corresponds to any two. Number of such functions = ${}^{7}C_{2} \times 2 = 42$

So, the required number of mappings = 35 + 7 + 42 = 84

20 **(b)**

The number of ordered triples of positive integers which are solution of x + y + z = 100

= coefficient of
$$x^{100}$$
 in $(x + x^2 + x^3 + ..)^3$
=coefficient of x^{100} in $x^3(1 - x)^{-3}$
=coefficient of x^{97} in
 $\left(1 + 3x + 6x^2 + + \frac{(n+1)(n+2)}{2}x^n + ...\right)$
 $= \frac{(97 + 1)(97 + 2)}{2} = 49 \times 99 = 4851$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	A	C	В	С	D	А	А	D	C
Q.	11	12	13	14	15	16	17	18	19	20
A.	А	D	C	В	А	А	В	С	A	В

