CLASS : XIth

TOpic :-PERMUTATIONS AND COMBINATIONS

1
(d)

In the word RAHUL the letters are ($\mathrm{A}, \mathrm{H}, \mathrm{L}, \mathrm{R}, \mathrm{U}$)
Number of words starting with $A=4!=24$
Number of words starting with $\mathrm{H}=4!=24$
Number of words starting with $\mathrm{L}=4!=24$
In the starting with R first one is RAHLU and next one is RAHUL.
\therefore Rank of the word RAHUL $=3(24)+2=74$
2 (a)
The required natural numbers consist of 4 digits, 3 digits, 2 digits and one digit so that their number is equal to
$9 \cdot 9 \cdot 8 \cdot 7+9 \cdot 9 \cdot 8+9 \cdot 9+9=5274$
3
(a)

We have 26 letters (a to z) and 10 digits (0 to 9). The first three places can be filled with letters in
${ }^{26} P_{3}$ ways and the remaining 2 places can be filled with digits ${ }^{10} P_{2}$ ways. Hence, the number of ways in which the code word can be made
$=\left({ }^{26} C_{3} \times 3!\right) \times\left({ }^{10} C_{2} \times 2!\right)=1404000$
4
(c)

The first digit a can take any one of 1 to 8
The third digit c can take any one of 0 to 9
When $a=1, b$ can take any one of 2 to $9=8$ values
When $a=2, b$ can take any one of 3 to $9=7$ values
When $a=3, b$ can take any one of 4 to $9=6$ values

When $a=8, b$ can take any one $(b=9)=1$ values Thus, the number of total numbers

$$
=(8+7+6+\ldots+2+1) \times 10=\frac{8 \times 9}{2} \times 10=360
$$

5
(c)

Since, out of eleven members two numbers sit together, then the number of arrangements $=9!\times 2$
(\because Two numbers can be sit in two ways)

6 (c)

There are 4 odd places and there are 4 odd numbers viz. 1, 1, 3, 3 . These, four numbers can be arranged in four places in
$\frac{4!}{2!2!}=6$ ways
In a seven digit are 3 even places namely 2 nd , $4^{\text {th }}$ and $6^{\text {th }}$ in which 3 even numbers $2,2,4$ can be arranged in $\frac{3!}{2!}=3$ ways
Hence, the total number of numbers $=6 \times 3=18$
7
(d)

The number of words starting from E are $=5!=120$
The number of words starting from H are $=5!=120$
The number of words starting from ME are $=4!=24$
The number of words starting from MH are $=4!=24$
The number of words starting from MOE are $=3!=6$
The number of words starting from MOH are $=3!=6$
The number of words starting from MOR are $=3!=6$
The number of words starting from MOTE are $=2!=2$
The number of words starting from MOTHER are $=1!=1$
Hence, rank of the word MOTHER
$=2(120)+2(24)+3(6)+2+1$
$=309$
8
(c)
(1) Total number of ways of arranging m things $=m$! To find the number of ways in which p particular things are together, we consider p particular thing as a group.
\therefore Number of ways in which p particular things are together $=(m-p+1)!p!$
So, number of ways in which p particular things are not together
$=m!-(m-p+1)!p!$
(2) Each player shall receive 13 cards.

Total number of ways $=\frac{52!}{(13!)^{4}}$
Hence, both statements are correct

9 (d)

Now, 770=2.5.7.11
We can assigned 2 to x_{1} or x_{2} or x_{3} or x_{4}. That is 2 can be assigned in 4 ways.
Similarly each of 5,7 or 11 can be assigned in 4 ways.
\therefore Required number of ways $=4^{4}=256$

10 (c)

There are five seats in a bus are vacant. A man sit on any one of 5 seats in 5 ways. After the man is seated his wife can be seated in any of 4 remaining seats in 4 ways.
Hence, total number of ways of seating them $=5 \times 4=20$
11
(c)

Required number $={ }^{9} C_{5}-{ }^{7} C_{3}=91$
12
(b)

Since, there are n distinct points on a circle.
For making a pentagon it requires a five points
According to given condition
${ }^{n} C_{5}={ }^{n} C_{3} \Rightarrow n=8$
13 (b)
The total number of ways $=6^{4}=1296$
\therefore required number of ways
$=1296$-(none of the number shows 2)
$=1296-5^{4}=671$
14
(c)

Required number of ways
$={ }^{11} C_{5}-{ }^{11} C_{4}$
$=\frac{11!}{5!6!}=\frac{11!}{4!7!}=132$
15 (d)
There are $(m+1)$ choices for each of n different books. So, the total number of choice is $(m+1)^{n}$ including one choice in which we do not select any book.
Hence, the required number of ways is $(m+1)^{n}-1$

16
 (b)

There are 6 letters in the word 'MOBILE'. Consequently, there are 3 odd places and 3 even places.
Three consonants M, B and L can occupy three odd places in 3 ! ways. Remaining three places can be filled by 3 vowels in 3 ! ways.
Hence, required number of words $=3!\times 3!=36$
17
(b)

As the seats are numbered so the arrangement is not circular
Hence, required number of arrangements $={ }^{n} C_{m} \times m$!
18 (d)
Two circles can intersect at most in two points. Hence, the maximum number of points of intersection is ${ }^{8} C_{2} \times 2=56$
19
(b)

There are two cases arise
Case I They do not invite the particular friend
$={ }^{8} C_{6}=28$
Case II They invite one particular friend
$={ }^{8} C_{5} \times{ }^{2} C_{1}=112$
\therefore Required number of ways $=28+112=140$
20
(d)

The consonants can be arranged in 4 ! ways, and the vowels in $\frac{3!}{2!}$ ways
So, the required number of arrangements $=\frac{4!3!}{2}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	D	A	A	C	C	C	D	C	D	C
Q.	11	12	13	14	15	16	17	18	19	20
A.	C	B	B	C	D	B	B	D	B	D

