

CLASS : XIth DATE :

Solutions

SUBJECT : MATHS DPP NO. :10

Topic :-PERMUTATIONS AND COMBINATIONS

1 **(d)**

In the word RAHUL the letters are (A, H, L, R, U)

Number of words starting with A = 4! = 24

Number of words starting with H=4!=24

Number of words starting with L = 4! = 24

In the starting with R first one is RAHLU and next one is RAHUL.

 \therefore Rank of the word RAHUL = 3(24) + 2 = 74

2 (a)

The required natural numbers consist of 4 digits, 3 digits, 2 digits and one digit so that their number is equal to

 $9 \cdot 9 \cdot 8 \cdot 7 + 9 \cdot 9 \cdot 8 + 9 \cdot 9 + 9 = 5274$

3 **(a)**

We have 26 letters (*a* to *z*) and 10 digits (0 to 9). The first three places can be filled with letters in ${}^{26}P_3$ ways and the remaining 2 places can be filled with digits ${}^{10}P_2$ ways. Hence, the number of

ways in which the code word can be made

 $= ({}^{26}C_3 \times 3 !) \times ({}^{10}C_2 \times 2 !) = 1404000$

The first digit *a* can take any one of 1 to 8

The third digit *c* can take any one of 0 to 9

When a = 1, b can take any one of 2 to 9=8 values

When a = 2, b can take any one of 3 to 9=7 values

When a = 3, b can take any one of 4 to 9=6 values

...

...

When a = 8, b can take any one (b = 9) = 1 values Thus, the number of total numbers

 $= (8 + 7 + 6 + ... + 2 + 1) \times 10 = \frac{8 \times 9}{2} \times 10 = 360$

5 (c)

Since, out of eleven members two numbers sit together, then the number of arrangements = $9! \times 2$

(: Two numbers can be sit in two ways)

6 **(c)**

There are 4 odd places and there are 4 odd numbers viz. 1, 1, 3, 3. These, four numbers can be arranged in four places in

 $\frac{4!}{2!2!} = 6$ ways

In a seven digit are 3 even places namely 2nd, 4th and 6th in which 3 even numbers 2, 2, 4 can be arranged in $\frac{3!}{2!} = 3$ ways

Hence, the total number of numbers $= 6 \times 3 = 18$

7 (d)

The number of words starting from E are =5!=120

The number of words starting from H are =5!=120

The number of words starting from ME are=4!=24

The number of words starting from MH are=4!=24

The number of words starting from MOE are =3!=6

The number of words starting from MOH are =3!=6

The number of words starting from MOR are =3!=6

The number of words starting from MOTE are =2!=2

The number of words starting from MOTHER are =1!=1

Hence, rank of the word MOTHER

= 2(120) + 2(24) + 3(6) + 2 + 1

= 309

8 (c)

(1) Total number of ways of arranging m things = m! To find the number of ways in which p particular things are together, we consider p particular thing as a group.

: Number of ways in which p particular things are together = (m - p + 1)!p!

So, number of ways in which *p* particular things are not together

= m! - (m - p + 1)!p!

(2) Each player shall receive 13 cards.

Total number of ways $=\frac{52!}{(13!)^4}$

Hence, both statements are correct

9 **(d)**

Now, 770=2.5.7.11

We can assigned 2 to x_1 or x_2 or x_3 or x_4 . That is 2 can be assigned in 4 ways.

Similarly each of 5, 7 or 11 can be assigned in 4 ways.

 \therefore Required number of ways = $4^4 = 256$

10 (c)

There are five seats in a bus are vacant. A man sit on any one of 5 seats in 5 ways. After the man is seated his wife can be seated in any of 4 remaining seats in 4 ways.

Hence, total number of ways of seating them $= 5 \times 4 = 20$

11 (c) Required number = ${}^{9}C_{5} - {}^{7}C_{3} = 91$ 12 (b) Since, there are *n* distinct points on a circle. For making a pentagon it requires a five points According to given condition ${}^{n}C_{5} = {}^{n}C_{3} \Rightarrow n = 8$ 13 (b) The total number of ways = 6⁴ = 1296 ∴ required number of ways

=1296-(none of the number of ways)= 1296-(none of the number shows 2) = 1296 - 5⁴ = 671 14 (c) Required number of ways = ¹¹C₅ - ¹¹C₄ = $\frac{11!}{5!6!} = \frac{11!}{4!7!} = 132$

15 **(d)**

There are (m + 1) choices for each of *n* different books. So, the total number of choice is $(m + 1)^n$ including one choice in which we do not select any book.

Hence, the required number of ways is $(m + 1)^n - 1$

16 **(b)**

There are 6 letters in the word 'MOBILE'. Consequently, there are 3 odd places and 3 even places. Three consonants *M*,*B* and *L* can occupy three odd places in 3 ! ways. Remaining three places can be filled by 3 vowels in 3 ! ways.

Hence, required number of words $= 3! \times 3! = 36$

17 **(b)**

As the seats are numbered so the arrangement is not circular

Hence, required number of arrangements $= {}^{n}C_{m} \times m!$

18 **(d)**

Two circles can intersect at most in two points. Hence, the maximum number of points of intersection is ${}^{8}C_{2} \times 2 = 56$

19 **(b)**

There are two cases arise

Case I They do not invite the particular friend

 $= {}^{8}C_{6} = 28$

Case II They invite one particular friend

 $= {}^{8}C_{5} \times {}^{2}C_{1} = 112$

 \therefore Required number of ways = 28+112=140

20 (d)

The consonants can be arranged in 4! ways, and the vowels in $\frac{3!}{2!}$ ways

So, the required number of arrangements $=\frac{4!3!}{2}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	D	A	A	С	С	С	D	С	D	С
Q.	11	12	13	14	15	16	17	18	19	20
A.	С	В	В	С	D	В	В	D	В	D

